| 1 | #ifndef GRID_HPP |
| 2 | #define GRID_HPP |
| 3 | |
| 4 | |
| 5 | #include "config.h" |
| 6 | #include "util/cuda_launch.hpp" |
| 7 | #include <boost/shared_array.hpp> |
| 8 | #include <vector> |
| 9 | #include <initializer_list> |
| 10 | #include <array> |
| 11 | #include "memory/memory.hpp" |
| 12 | #include "Space/Shape/Box.hpp" |
| 13 | #include "grid_key.hpp" |
| 14 | #include <iostream> |
| 15 | #include "util/mathutil.hpp" |
| 16 | #include "iterators/stencil_type.hpp" |
| 17 | |
| 18 | |
| 19 | // Box need the definition of grid_key_dx_r |
| 20 | #define HARDWARE 1 |
| 21 | |
| 22 | |
| 23 | struct No_check |
| 24 | { |
| 25 | template<typename SparseGrid_type> |
| 26 | __device__ __host__ bool check(SparseGrid_type & sggt,unsigned int dataBlockPos, unsigned int offset) |
| 27 | { |
| 28 | return true; |
| 29 | } |
| 30 | }; |
| 31 | |
| 32 | template<unsigned int dim, typename T> |
| 33 | struct Box_check |
| 34 | { |
| 35 | Box<dim,T> box; |
| 36 | |
| 37 | template<typename T2> |
| 38 | explicit Box_check(Box<dim,T2> & box) |
| 39 | :box(box) |
| 40 | {} |
| 41 | |
| 42 | template<typename SparseGridGpu_type> |
| 43 | __device__ __host__ bool check(SparseGridGpu_type & sggt,unsigned int dataBlockId, unsigned int offset) |
| 44 | { |
| 45 | auto key = sggt.getCoord(dataBlockId,offset); |
| 46 | |
| 47 | return box.isInsideKey(key); |
| 48 | } |
| 49 | }; |
| 50 | |
| 51 | |
| 52 | /*! \brief Class to check if the edge can be created or not |
| 53 | * |
| 54 | * Class to check if the edge can be created or not, in this case no check is implemented |
| 55 | * |
| 56 | */ |
| 57 | |
| 58 | class NoCheck |
| 59 | { |
| 60 | public: |
| 61 | /*! \brief No check is performed |
| 62 | * |
| 63 | * No check is performed |
| 64 | * |
| 65 | * \param v_id Vertex id |
| 66 | * \param sz Size limit for the vertex id |
| 67 | * |
| 68 | */ |
| 69 | static bool valid(size_t v_id, size_t sz) |
| 70 | { |
| 71 | return true; |
| 72 | } |
| 73 | }; |
| 74 | |
| 75 | /*! \brief Class to check if the edge can be created or not |
| 76 | * |
| 77 | * Class to check if the edge can be created or not, in this case no check is implemented |
| 78 | * |
| 79 | */ |
| 80 | |
| 81 | class CheckExistence |
| 82 | { |
| 83 | public: |
| 84 | /*! \brief Check if vertex exist |
| 85 | * |
| 86 | * Check if exist |
| 87 | * |
| 88 | * \param v_id Vertex id |
| 89 | * \param sz Size limit for the vertex id |
| 90 | * |
| 91 | * \return true if exist |
| 92 | * |
| 93 | */ |
| 94 | static bool valid(size_t v_id, size_t sz) |
| 95 | { |
| 96 | return v_id < sz; |
| 97 | } |
| 98 | }; |
| 99 | |
| 100 | template<unsigned int dim> |
| 101 | struct ite_gpu |
| 102 | { |
| 103 | #ifdef CUDA_GPU |
| 104 | |
| 105 | dim3 thr; |
| 106 | dim3 wthr; |
| 107 | |
| 108 | grid_key_dx<dim,int> start; |
| 109 | grid_key_dx<dim,int> stop; |
| 110 | |
| 111 | size_t nblocks() |
| 112 | { |
| 113 | return wthr.x * wthr.y * wthr.z; |
| 114 | } |
| 115 | |
| 116 | size_t nthrs() |
| 117 | { |
| 118 | return thr.x * thr.y * thr.z; |
| 119 | } |
| 120 | |
| 121 | #endif |
| 122 | }; |
| 123 | |
| 124 | //! Declaration grid_sm |
| 125 | template<unsigned int N, typename T> class grid_sm; |
| 126 | |
| 127 | template<unsigned int dim, typename T2, typename T> |
| 128 | ite_gpu<dim> getGPUIterator_impl(const grid_sm<dim,T2> & g1, const grid_key_dx<dim,T> & key1, const grid_key_dx<dim,T> & key2, size_t n_thr = 1024); |
| 129 | |
| 130 | //! Declaration print_warning_on_adjustment |
| 131 | template <unsigned int dim, typename linearizer> class print_warning_on_adjustment; |
| 132 | |
| 133 | //! Declaration grid_key_dx_iterator_sub |
| 134 | template<unsigned int dim,typename stencil=no_stencil, typename linearizer = grid_sm<dim,void>, typename warn=print_warning_on_adjustment<dim,linearizer>> class grid_key_dx_iterator_sub; |
| 135 | |
| 136 | /*! \brief class that store the information of the grid like number of point on each direction and |
| 137 | * define the index linearization by stride |
| 138 | * |
| 139 | * \param N dimensionality |
| 140 | * \param T type of object is going to store the grid |
| 141 | * |
| 142 | */ |
| 143 | template<unsigned int N, typename T> |
| 144 | class grid_sm |
| 145 | { |
| 146 | //! Box enclosing the grid |
| 147 | Box<N,size_t> box; |
| 148 | |
| 149 | //! total number of the elements in the grid |
| 150 | size_t size_tot; |
| 151 | |
| 152 | //! size of the grid |
| 153 | size_t sz[N]; |
| 154 | |
| 155 | //! size of the grid on each stride (used for linearization) |
| 156 | size_t sz_s[N]; |
| 157 | |
| 158 | /*! \brief Initialize the basic structure |
| 159 | * |
| 160 | * Initialize the basic structure |
| 161 | * |
| 162 | * \param sz vector that store the size of the grid on each |
| 163 | * dimensions |
| 164 | * |
| 165 | */ |
| 166 | |
| 167 | inline void Initialize(const size_t sz) |
| 168 | { |
| 169 | //! Initialize the basic structure for each dimension |
| 170 | sz_s[0] = sz; |
| 171 | this->sz[0] = sz; |
| 172 | |
| 173 | // set the box |
| 174 | box.setHigh(0,sz); |
| 175 | box.setLow(0,0); |
| 176 | |
| 177 | for (size_t i = 1 ; i < N ; i++) |
| 178 | { |
| 179 | /* coverity[dead_error_begin] */ |
| 180 | sz_s[i] = sz*sz_s[i-1]; |
| 181 | this->sz[i] = sz; |
| 182 | |
| 183 | // set the box |
| 184 | box.setHigh(i,sz); |
| 185 | box.setLow(i,0); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | /*! \brief Initialize the basic structure |
| 190 | * |
| 191 | * Initialize the basic structure |
| 192 | * |
| 193 | * \param sz vector that store the size of the grid on each |
| 194 | * dimensions |
| 195 | * |
| 196 | */ |
| 197 | |
| 198 | inline void Initialize(const size_t (& sz)[N]) |
| 199 | { |
| 200 | //! Initialize the basic structure for each dimension |
| 201 | sz_s[0] = sz[0]; |
| 202 | this->sz[0] = sz[0]; |
| 203 | |
| 204 | // set the box |
| 205 | box.setHigh(0,sz[0]); |
| 206 | box.setLow(0,0); |
| 207 | |
| 208 | for (size_t i = 1 ; i < N ; i++) |
| 209 | { |
| 210 | /* coverity[dead_error_begin] */ |
| 211 | sz_s[i] = sz[i]*sz_s[i-1]; |
| 212 | this->sz[i] = sz[i]; |
| 213 | |
| 214 | // set the box |
| 215 | box.setHigh(i,sz[i]); |
| 216 | box.setLow(i,0); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /*! \brief Initialize the basic structure |
| 221 | * |
| 222 | * Produce a grid of size 0 on each dimension |
| 223 | * |
| 224 | */ |
| 225 | |
| 226 | inline void Initialize() |
| 227 | { |
| 228 | //! Initialize the basic structure for each dimension |
| 229 | sz_s[0] = 0; |
| 230 | this->sz[0] = 0; |
| 231 | |
| 232 | // set the box |
| 233 | box.setHigh(0,0); |
| 234 | box.setLow(0,0); |
| 235 | |
| 236 | for (size_t i = 1 ; i < N ; i++) |
| 237 | { |
| 238 | /* coverity[dead_error_begin] */ |
| 239 | sz_s[i] = sz[i]*sz_s[i-1]; |
| 240 | |
| 241 | // set the box |
| 242 | box.setHigh(i,sz[i]); |
| 243 | box.setLow(i,0); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | /*! \brief linearize an arbitrary set of index |
| 248 | * |
| 249 | * linearize an arbitrary set of index |
| 250 | * |
| 251 | */ |
| 252 | template<typename a, typename ...lT> |
| 253 | __device__ __host__ inline mem_id Lin_impl(a v,lT...t) const |
| 254 | { |
| 255 | return v*sz_s[sizeof...(t)-1] + Lin_impl(t...); |
| 256 | } |
| 257 | |
| 258 | //! Linearize a set of index |
| 259 | template<typename a> __device__ __host__ inline mem_id Lin_impl(a v) const |
| 260 | { |
| 261 | return v; |
| 262 | } |
| 263 | |
| 264 | public: |
| 265 | |
| 266 | |
| 267 | /*! \brief Return the box enclosing the grid |
| 268 | * |
| 269 | * \return the box |
| 270 | * |
| 271 | */ |
| 272 | inline Box<N,size_t> getBox() const |
| 273 | { |
| 274 | return box; |
| 275 | } |
| 276 | |
| 277 | /*! \brief Return the box enclosing the grid |
| 278 | * |
| 279 | * While getBox return as P2 the size of the grid |
| 280 | * getBoxKey return the size - 1 equivalent to the maximum valid point |
| 281 | * that does not overflow the grid |
| 282 | * |
| 283 | * \return the box |
| 284 | * |
| 285 | */ |
| 286 | inline const Box<N,size_t> getBoxKey() const |
| 287 | { |
| 288 | Box<N,size_t> bx; |
| 289 | |
| 290 | for (size_t i = 0 ; i < N ; i++) |
| 291 | { |
| 292 | bx.setLow(i,box.getLow(i)); |
| 293 | bx.setHigh(i,box.getHigh(i) - 1); |
| 294 | } |
| 295 | |
| 296 | return bx; |
| 297 | } |
| 298 | |
| 299 | /*! \brief Reset the dimension of the grid |
| 300 | * |
| 301 | * \param dims store on each dimension the size of the grid |
| 302 | * |
| 303 | */ |
| 304 | inline void setDimensions(const size_t (& dims)[N]) |
| 305 | { |
| 306 | Initialize(dims); |
| 307 | size_tot = totalSize(dims); |
| 308 | } |
| 309 | |
| 310 | /*! \brief Default constructor |
| 311 | * |
| 312 | * It produce a grid of size 0 on each dimension |
| 313 | * |
| 314 | */ |
| 315 | |
| 316 | inline grid_sm() |
| 317 | :size_tot(0) |
| 318 | { |
| 319 | // Initialize sz |
| 320 | for (size_t i = 0 ; i < N ; i++) |
| 321 | {sz[i] = 0;} |
| 322 | |
| 323 | Initialize(); |
| 324 | } |
| 325 | |
| 326 | /*! \brief construct a grid from another grid |
| 327 | * |
| 328 | * \param g grid info |
| 329 | * |
| 330 | * construct a grid from another grid, type can be different |
| 331 | * |
| 332 | */ |
| 333 | |
| 334 | template<typename S> inline grid_sm(const grid_sm<N,S> & g) |
| 335 | { |
| 336 | size_tot = g.size_tot; |
| 337 | |
| 338 | for (size_t i = 0 ; i < N ; i++) |
| 339 | { |
| 340 | sz[i] = g.sz[i]; |
| 341 | sz_s[i] = g.sz_s[i]; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | // Static element to calculate total size |
| 346 | |
| 347 | inline size_t totalSize(const size_t sz) |
| 348 | { |
| 349 | size_t tSz = 1; |
| 350 | |
| 351 | for (size_t i = 0 ; i < N ; i++) |
| 352 | { |
| 353 | tSz *= sz; |
| 354 | } |
| 355 | |
| 356 | return tSz; |
| 357 | } |
| 358 | |
| 359 | // Static element to calculate total size |
| 360 | |
| 361 | inline size_t totalSize(const size_t (& sz)[N]) |
| 362 | { |
| 363 | size_t tSz = 1; |
| 364 | |
| 365 | for (size_t i = 0 ; i < N ; i++) |
| 366 | { |
| 367 | tSz *= sz[i]; |
| 368 | } |
| 369 | |
| 370 | return tSz; |
| 371 | } |
| 372 | |
| 373 | |
| 374 | /*! \brief Construct a grid of a specified size |
| 375 | * |
| 376 | * Construct a grid of a specified size |
| 377 | * |
| 378 | * \param sz is an array that contain the size of the grid on each dimension |
| 379 | * |
| 380 | */ |
| 381 | |
| 382 | inline grid_sm(const size_t & sz) |
| 383 | : size_tot(totalSize(sz)) |
| 384 | { |
| 385 | Initialize(sz); |
| 386 | } |
| 387 | |
| 388 | /*! \brief Construct a grid of a specified size |
| 389 | * |
| 390 | * Construct a grid of a specified size |
| 391 | * |
| 392 | * \param sz is an array that contain the size of the grid on each dimension |
| 393 | * |
| 394 | */ |
| 395 | |
| 396 | inline grid_sm(const size_t (& sz)[N]) |
| 397 | : size_tot(totalSize(sz)) |
| 398 | { |
| 399 | Initialize(sz); |
| 400 | } |
| 401 | |
| 402 | /*! \brief Linearization of the grid_key_dx with a specified shift |
| 403 | * |
| 404 | * \tparam check class that check the linearization, if this check fail the function return -1 |
| 405 | * \param gk grid_key_dx to linearize |
| 406 | * \param sum_id shift on each dimension |
| 407 | * |
| 408 | * \return The linearization of the gk key shifted by c, or -1 if the check fail |
| 409 | */ |
| 410 | |
| 411 | template<typename check=NoCheck, typename ids_type> |
| 412 | inline mem_id LinId(const grid_key_dx<N,ids_type> & gk, const char sum_id[N]) const |
| 413 | { |
| 414 | mem_id lid; |
| 415 | |
| 416 | // Check the sum produce a valid key |
| 417 | |
| 418 | if (check::valid(gk.get(0) + sum_id[0],sz[0]) == false) |
| 419 | return -1; |
| 420 | |
| 421 | lid = gk.get(0) + sum_id[0]; |
| 422 | |
| 423 | |
| 424 | for (mem_id i = 1 ; i < N ; i++) |
| 425 | { |
| 426 | // Check the sum produce a valid key |
| 427 | |
| 428 | if (check::valid(gk.get(i) + sum_id[i],sz[i]) == false) |
| 429 | return -1; |
| 430 | |
| 431 | lid += (gk.get(i) + sum_id[i]) * sz_s[i-1]; |
| 432 | } |
| 433 | |
| 434 | return lid; |
| 435 | } |
| 436 | |
| 437 | /*! \brief Linearization of the grid_key_dx with a specified shift |
| 438 | * |
| 439 | * \tparam check class that check the linearization, if this check fail the function return -1 |
| 440 | * \param gk grid_key_dx to linearize |
| 441 | * \param sum_id shift on each dimension |
| 442 | * \param bc boundary conditions |
| 443 | * |
| 444 | * \return The linearization of the gk key shifted by c, or -1 if the check fail |
| 445 | */ |
| 446 | |
| 447 | template<typename check=NoCheck,typename ids_type> |
| 448 | inline mem_id LinId(const grid_key_dx<N,ids_type> & gk, const char sum_id[N], const size_t (&bc)[N]) const |
| 449 | { |
| 450 | mem_id lid; |
| 451 | |
| 452 | // Check the sum produce a valid key |
| 453 | |
| 454 | if (bc[0] == NON_PERIODIC) |
| 455 | { |
| 456 | if (check::valid(gk.get(0) + sum_id[0],sz[0]) == false) |
| 457 | return -1; |
| 458 | |
| 459 | lid = gk.get(0) + sum_id[0]; |
| 460 | } |
| 461 | else |
| 462 | { |
| 463 | lid = openfpm::math::positive_modulo(gk.get(0) + sum_id[0],sz[0]); |
| 464 | } |
| 465 | |
| 466 | for (mem_id i = 1 ; i < N ; i++) |
| 467 | { |
| 468 | // Check the sum produce a valid key |
| 469 | |
| 470 | /* coverity[dead_error_line] */ |
| 471 | if (bc[i] == NON_PERIODIC) |
| 472 | { |
| 473 | if (check::valid(gk.get(i) + sum_id[i],sz[i]) == false) |
| 474 | return -1; |
| 475 | |
| 476 | lid += (gk.get(i) + sum_id[i]) * sz_s[i-1]; |
| 477 | } |
| 478 | else |
| 479 | { |
| 480 | lid += (openfpm::math::positive_modulo(gk.get(i) + sum_id[i],sz[i])) * sz_s[i-1]; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | return lid; |
| 485 | } |
| 486 | |
| 487 | /*! \brief Linearization of the set of indexes |
| 488 | * |
| 489 | * Linearization of the set of indexes, it spit out a number that is just the 1D linearization. |
| 490 | * In this case is the linearization of N index |
| 491 | * |
| 492 | * \param k set of indexes to linearize |
| 493 | * |
| 494 | */ |
| 495 | inline mem_id LinIdPtr(size_t * k) const |
| 496 | { |
| 497 | mem_id lid = k[0]; |
| 498 | for (mem_id i = 1 ; i < N ; i++) |
| 499 | { |
| 500 | lid += k[i] * sz_s[i-1]; |
| 501 | } |
| 502 | |
| 503 | return lid; |
| 504 | } |
| 505 | |
| 506 | /*! \brief Linearization of the grid_key_dx |
| 507 | * |
| 508 | * Linearization of the grid_key_dx given a key, it spit out a number that is just the 1D linearization |
| 509 | * of the key. In this case is the linearization of N index |
| 510 | * |
| 511 | * \param k grid key to access the element on the grid |
| 512 | * |
| 513 | */ |
| 514 | |
| 515 | __device__ __host__ inline mem_id LinId(const size_t (& k)[N]) const |
| 516 | { |
| 517 | mem_id lid = k[0]; |
| 518 | for (mem_id i = 1 ; i < N ; i++) |
| 519 | { |
| 520 | /* coverity[dead_error_line] */ |
| 521 | lid += k[i] * sz_s[i-1]; |
| 522 | } |
| 523 | |
| 524 | return lid; |
| 525 | } |
| 526 | |
| 527 | /*! \brief Linearization of the grid_key_dx |
| 528 | * |
| 529 | * Linearization of the grid_key_dx given a key, it spit out a number that is just the 1D linearization |
| 530 | * of the key. In this case is the linearization of N index |
| 531 | * |
| 532 | * \param gk grid key to access the element of the grid |
| 533 | * |
| 534 | */ |
| 535 | |
| 536 | template<typename ids_type> __device__ __host__ inline mem_id LinId(const grid_key_dx<N,ids_type> & gk) const |
| 537 | { |
| 538 | mem_id lid = gk.get(0); |
| 539 | for (mem_id i = 1 ; i < N ; i++) |
| 540 | { |
| 541 | /* coverity[dead_error_line] */ |
| 542 | lid += gk.get(i) * sz_s[i-1]; |
| 543 | } |
| 544 | |
| 545 | return lid; |
| 546 | } |
| 547 | |
| 548 | /*! \brief linearize an arbitrary set of index |
| 549 | * |
| 550 | * linearize an arbitrary set of index |
| 551 | * |
| 552 | */ |
| 553 | template<typename a, typename ...lT, typename enabler = typename std::enable_if<sizeof...(lT) == N-1>::type > |
| 554 | __device__ __host__ inline mem_id Lin(a v,lT...t) const |
| 555 | { |
| 556 | return v*sz_s[sizeof...(t)-1] + Lin_impl(t...); |
| 557 | } |
| 558 | |
| 559 | //! Construct |
| 560 | |
| 561 | /*! \brief inversion of the linearization of the grid_key_dx |
| 562 | * |
| 563 | * \param id of the object |
| 564 | * \return key of the grid that id identify |
| 565 | * |
| 566 | */ |
| 567 | __device__ __host__ inline grid_key_dx<N> InvLinId(mem_id id) const |
| 568 | { |
| 569 | // Inversion of linearize |
| 570 | |
| 571 | grid_key_dx<N> gk; |
| 572 | |
| 573 | for (mem_id i = 0 ; i < N ; i++) |
| 574 | { |
| 575 | gk.set_d(i,id % sz[i]); |
| 576 | id /= sz[i]; |
| 577 | } |
| 578 | |
| 579 | return gk; |
| 580 | } |
| 581 | |
| 582 | |
| 583 | /*! \brief Linearization of an array of mem_id (long int) |
| 584 | * |
| 585 | * Linearization of an array of mem_id, it spit out a number that is just the 1D linearization |
| 586 | * of the key. In this case is the linearization of N index |
| 587 | * |
| 588 | * \param id an array of mem_id index |
| 589 | * |
| 590 | */ |
| 591 | |
| 592 | //#pragma openfpm layout(get) |
| 593 | inline mem_id LinId(mem_id * id) const |
| 594 | { |
| 595 | mem_id lid = 0; |
| 596 | lid += id[0]; |
| 597 | for (mem_id i = 1 ; i < N ; i++) |
| 598 | { |
| 599 | lid += id[i] * sz_s[i-1]; |
| 600 | } |
| 601 | |
| 602 | return lid; |
| 603 | } |
| 604 | |
| 605 | //! Destructor |
| 606 | ~grid_sm() {}; |
| 607 | |
| 608 | /*! \brief Return the size of the grid |
| 609 | * |
| 610 | * Return the size of the grid |
| 611 | * |
| 612 | * \return the size of the grid |
| 613 | * |
| 614 | */ |
| 615 | __device__ __host__ inline size_t size() const |
| 616 | { |
| 617 | return size_tot; |
| 618 | }; |
| 619 | |
| 620 | /*! \brief Copy the grid from another grid |
| 621 | * |
| 622 | * \param g grid from witch to copy |
| 623 | * |
| 624 | */ |
| 625 | |
| 626 | __device__ __host__ inline grid_sm<N,T> & operator=(const grid_sm<N,T> & g) |
| 627 | { |
| 628 | size_tot = g.size_tot; |
| 629 | |
| 630 | for (size_t i = 0 ; i < N ; i++) |
| 631 | { |
| 632 | sz[i] = g.sz[i]; |
| 633 | sz_s[i] = g.sz_s[i]; |
| 634 | } |
| 635 | |
| 636 | box = g.box; |
| 637 | |
| 638 | return *this; |
| 639 | } |
| 640 | |
| 641 | /*! \brief Check if the two grid_sm are the same |
| 642 | * |
| 643 | * \param g element to check |
| 644 | * |
| 645 | * \return true if they are the same |
| 646 | * |
| 647 | */ |
| 648 | |
| 649 | inline bool operator==(const grid_sm<N,T> & g) |
| 650 | { |
| 651 | for (size_t i = 0 ; i < N ; i++) |
| 652 | { |
| 653 | if (sz[i] != g.sz[i]) |
| 654 | return false; |
| 655 | } |
| 656 | |
| 657 | #ifdef SE_CLASS1 |
| 658 | |
| 659 | if (size_tot != g.size_tot) |
| 660 | return false; |
| 661 | |
| 662 | for (size_t i = 0 ; i < N ; i++) |
| 663 | { |
| 664 | if (sz_s[i] != g.sz_s[i]) |
| 665 | return false; |
| 666 | } |
| 667 | |
| 668 | #endif |
| 669 | return true; |
| 670 | } |
| 671 | |
| 672 | /*! \brief Check if the two grid_sm are the same |
| 673 | * |
| 674 | * \param g element to check |
| 675 | * |
| 676 | */ |
| 677 | |
| 678 | inline bool operator!=(const grid_sm<N,T> & g) |
| 679 | { |
| 680 | return ! this->operator==(g); |
| 681 | } |
| 682 | |
| 683 | /** |
| 684 | * |
| 685 | * Get the stride-size of the grid on the direction i |
| 686 | * |
| 687 | * [Example] on a grid 16*16*16 it return 16,256 |
| 688 | * |
| 689 | * \param i direction |
| 690 | * \return the size on the direction i |
| 691 | * |
| 692 | */ |
| 693 | |
| 694 | inline size_t size_s(unsigned int i) const |
| 695 | { |
| 696 | return sz_s[i]; |
| 697 | } |
| 698 | |
| 699 | /** |
| 700 | * |
| 701 | * Get the size of the grid on the direction i |
| 702 | * |
| 703 | * \param i direction |
| 704 | * \return the size on the direction i |
| 705 | * |
| 706 | */ |
| 707 | |
| 708 | __device__ __host__ inline size_t size(unsigned int i) const |
| 709 | { |
| 710 | return sz[i]; |
| 711 | } |
| 712 | |
| 713 | /*! \brief Return the size of the grid as an array |
| 714 | * |
| 715 | * \return get the size of the grid as an array |
| 716 | * |
| 717 | */ |
| 718 | inline const size_t (& getSize() const)[N] |
| 719 | { |
| 720 | return sz; |
| 721 | } |
| 722 | |
| 723 | /*! \brief Return a sub-grid iterator |
| 724 | * |
| 725 | * Return a sub-grid iterator, to iterate through the grid |
| 726 | * |
| 727 | * \param start start point |
| 728 | * \param stop stop point |
| 729 | * |
| 730 | */ |
| 731 | inline grid_key_dx_iterator_sub<N> getSubIterator(const grid_key_dx<N> & start, const grid_key_dx<N> & stop) const |
| 732 | { |
| 733 | return grid_key_dx_iterator_sub<N>(*this,start,stop); |
| 734 | } |
| 735 | |
| 736 | #ifdef CUDA_GPU |
| 737 | |
| 738 | /*! \brief Get an iterator for the GPU |
| 739 | * |
| 740 | * \param start starting point |
| 741 | * \param stop end point |
| 742 | * |
| 743 | */ |
| 744 | template<typename T2> |
| 745 | struct ite_gpu<N> getGPUIterator(const grid_key_dx<N,T2> & key1, const grid_key_dx<N,T2> & key2, size_t n_thr = 1024) const |
| 746 | { |
| 747 | return getGPUIterator_impl<N>(*this,key1,key2,n_thr); |
| 748 | } |
| 749 | |
| 750 | /*! \brief Get an iterator for the GPU |
| 751 | * |
| 752 | * \param start starting point |
| 753 | * \param stop end point |
| 754 | * |
| 755 | */ |
| 756 | struct ite_gpu<N> getGPUIterator(size_t n_thr = 1024) const |
| 757 | { |
| 758 | grid_key_dx<N> k1; |
| 759 | grid_key_dx<N> k2; |
| 760 | |
| 761 | for (size_t i = 0 ; i < N ; i++) |
| 762 | { |
| 763 | k1.set_d(i,0); |
| 764 | k2.set_d(i,size(i)); |
| 765 | } |
| 766 | |
| 767 | return getGPUIterator_impl<N>(*this,k1,k2,n_thr); |
| 768 | } |
| 769 | |
| 770 | #endif |
| 771 | |
| 772 | /*! \brief swap the grid_sm informations |
| 773 | * |
| 774 | * \param g grid to swap |
| 775 | * |
| 776 | */ |
| 777 | inline void swap(grid_sm<N,T> & g) |
| 778 | { |
| 779 | size_t tmp = size_tot; |
| 780 | size_tot = g.size_tot; |
| 781 | g.size_tot = tmp; |
| 782 | |
| 783 | for (size_t i = 0 ; i < N ; i++) |
| 784 | { |
| 785 | tmp = sz[i]; |
| 786 | sz[i] = g.sz[i]; |
| 787 | g.sz[i] = tmp; |
| 788 | |
| 789 | tmp = sz_s[i]; |
| 790 | sz_s[i] = g.sz_s[i]; |
| 791 | g.sz_s[i] = tmp; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | /*! \brief Produce a string from the object |
| 796 | * |
| 797 | * \return string |
| 798 | * |
| 799 | */ |
| 800 | std::string toString() const |
| 801 | { |
| 802 | std::stringstream str; |
| 803 | |
| 804 | for (size_t i = 0 ; i < N ; i++) |
| 805 | str << "sz[" << i << "]=" << size(i) << " " ; |
| 806 | |
| 807 | return str.str(); |
| 808 | } |
| 809 | |
| 810 | //! It simply mean that all the classes grid are friend of all its specialization |
| 811 | template <unsigned int,typename> friend class grid_sm; |
| 812 | }; |
| 813 | |
| 814 | |
| 815 | template<unsigned int dim, typename T2, typename T> |
| 816 | ite_gpu<dim> getGPUIterator_impl(const grid_sm<dim,T2> & g1, const grid_key_dx<dim,T> & key1, const grid_key_dx<dim,T> & key2, const size_t n_thr) |
| 817 | { |
| 818 | size_t tot_work = 1; |
| 819 | for (size_t i = 0 ; i < dim ; i++) |
| 820 | {tot_work *= key2.get(i) - key1.get(i) + 1;} |
| 821 | |
| 822 | size_t n = (tot_work <= n_thr)?openfpm::math::round_big_2(tot_work):n_thr; |
| 823 | |
| 824 | // Work to do |
| 825 | ite_gpu<dim> ig; |
| 826 | |
| 827 | if (tot_work == 0) |
| 828 | { |
| 829 | ig.thr.x = 0; |
| 830 | ig.thr.y = 0; |
| 831 | ig.thr.z = 0; |
| 832 | |
| 833 | ig.wthr.x = 0; |
| 834 | ig.wthr.y = 0; |
| 835 | ig.wthr.z = 0; |
| 836 | |
| 837 | return ig; |
| 838 | } |
| 839 | |
| 840 | ig.thr.x = 1; |
| 841 | ig.thr.y = 1; |
| 842 | ig.thr.z = 1; |
| 843 | |
| 844 | int dir = 0; |
| 845 | |
| 846 | while (n != 1) |
| 847 | { |
| 848 | if (dir % 3 == 0) |
| 849 | {ig.thr.x = ig.thr.x << 1;} |
| 850 | else if (dir % 3 == 1) |
| 851 | {ig.thr.y = ig.thr.y << 1;} |
| 852 | else if (dir % 3 == 2) |
| 853 | {ig.thr.z = ig.thr.z << 1;} |
| 854 | |
| 855 | n = n >> 1; |
| 856 | |
| 857 | dir++; |
| 858 | dir %= dim; |
| 859 | } |
| 860 | |
| 861 | if (dim >= 1) |
| 862 | {ig.wthr.x = (key2.get(0) - key1.get(0) + 1) / ig.thr.x + (((key2.get(0) - key1.get(0) + 1)%ig.thr.x != 0)?1:0);} |
| 863 | |
| 864 | if (dim >= 2) |
| 865 | {ig.wthr.y = (key2.get(1) - key1.get(1) + 1) / ig.thr.y + (((key2.get(1) - key1.get(1) + 1)%ig.thr.y != 0)?1:0);} |
| 866 | else |
| 867 | {ig.wthr.y = 1;} |
| 868 | |
| 869 | if (dim >= 3) |
| 870 | { |
| 871 | // Roll the other dimensions on z |
| 872 | ig.wthr.z = 1; |
| 873 | for (size_t i = 2 ; i < dim ; i++) |
| 874 | {ig.wthr.z *= (key2.get(i) - key1.get(i) + 1) / ig.thr.z + (((key2.get(i) - key1.get(i) + 1)%ig.thr.z != 0)?1:0);} |
| 875 | } |
| 876 | else |
| 877 | {ig.wthr.z = 1;} |
| 878 | |
| 879 | // crop if wthr == 1 |
| 880 | |
| 881 | if (dim >= 1 && ig.wthr.x == 1) |
| 882 | {ig.thr.x = (key2.get(0) - key1.get(0) + 1);} |
| 883 | |
| 884 | if (dim >= 2 && ig.wthr.y == 1) |
| 885 | {ig.thr.y = key2.get(1) - key1.get(1) + 1;} |
| 886 | |
| 887 | if (dim == 3 && ig.wthr.z == 1) |
| 888 | {ig.thr.z = key2.get(2) - key1.get(2) + 1;} |
| 889 | |
| 890 | for (size_t i = 0 ; i < dim ; i++) |
| 891 | { |
| 892 | ig.start.set_d(i,key1.get(i)); |
| 893 | ig.stop.set_d(i,key2.get(i)); |
| 894 | } |
| 895 | |
| 896 | return ig; |
| 897 | } |
| 898 | |
| 899 | |
| 900 | /*! \brief Emulate grid_key_dx with runtime dimensionality |
| 901 | * |
| 902 | * Emulate grid_key_dx with runtime dimensionality |
| 903 | * |
| 904 | */ |
| 905 | |
| 906 | class grid_key_dx_r |
| 907 | { |
| 908 | size_t dim; |
| 909 | |
| 910 | public: |
| 911 | |
| 912 | /*! \brief Get the dimensionality of the key |
| 913 | * |
| 914 | * Get the dimensionality of the key |
| 915 | * |
| 916 | */ |
| 917 | |
| 918 | size_t getDim() |
| 919 | { |
| 920 | return dim; |
| 921 | } |
| 922 | |
| 923 | /*! \brief constructor from another key |
| 924 | * |
| 925 | * \param key |
| 926 | * |
| 927 | */ |
| 928 | grid_key_dx_r(grid_key_dx_r & key) |
| 929 | :dim(key.dim) |
| 930 | { |
| 931 | // Allocate the key |
| 932 | k = new mem_id[dim]; |
| 933 | |
| 934 | // Copy the key |
| 935 | for(unsigned int i = 0 ; i < dim ; i++) |
| 936 | { |
| 937 | k[i] = key.k[i]; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | /*! \brief constructor |
| 942 | * |
| 943 | * constructor |
| 944 | * |
| 945 | * \param dim Dimensionality |
| 946 | * |
| 947 | */ |
| 948 | grid_key_dx_r(size_t dim) |
| 949 | :dim(dim) |
| 950 | { |
| 951 | // Allocate the key |
| 952 | k = new mem_id[dim]; |
| 953 | } |
| 954 | |
| 955 | ~grid_key_dx_r() |
| 956 | { |
| 957 | delete [] k; |
| 958 | } |
| 959 | |
| 960 | //! set the grid key from a list of numbers |
| 961 | template<typename a, typename ...T>void set(a v, T...t) |
| 962 | { |
| 963 | k[dim-1] = v; |
| 964 | invert_assign(t...); |
| 965 | } |
| 966 | |
| 967 | /*! \brief get the i index |
| 968 | * |
| 969 | * Get the i index |
| 970 | * |
| 971 | * \param i index to get |
| 972 | * |
| 973 | * \return the index value |
| 974 | * |
| 975 | */ |
| 976 | mem_id get(size_t i) |
| 977 | { |
| 978 | return k[i]; |
| 979 | } |
| 980 | |
| 981 | /*! \brief Set the i index |
| 982 | * |
| 983 | * Set the i index |
| 984 | * |
| 985 | * \param i index to set |
| 986 | * \param id value to set |
| 987 | * |
| 988 | */ |
| 989 | void set_d(size_t i, mem_id id) |
| 990 | { |
| 991 | k[i] = id; |
| 992 | } |
| 993 | |
| 994 | //! structure that store all the index |
| 995 | mem_id * k; |
| 996 | |
| 997 | private: |
| 998 | |
| 999 | /*! \brief Recursively invert the assignment |
| 1000 | * |
| 1001 | * Recursively invert the assignment at compile-time |
| 1002 | * |
| 1003 | */ |
| 1004 | template<typename a, typename ...T>void invert_assign(a v,T...t) |
| 1005 | { |
| 1006 | k[sizeof...(T)] = v; |
| 1007 | invert_assign(t...); |
| 1008 | } |
| 1009 | |
| 1010 | template<typename a, typename ...T>void invert_assign(a v) |
| 1011 | { |
| 1012 | k[0] = v; |
| 1013 | } |
| 1014 | |
| 1015 | void invert_assign() |
| 1016 | { |
| 1017 | } |
| 1018 | |
| 1019 | }; |
| 1020 | |
| 1021 | |
| 1022 | /** |
| 1023 | * |
| 1024 | * Iterate through the elements (i1,i2,....,in) with i1 ... in unsigned integers |
| 1025 | * with the following constrain (i1>i2>......>in) |
| 1026 | * |
| 1027 | */ |
| 1028 | |
| 1029 | class Iterator_g_const |
| 1030 | { |
| 1031 | size_t dim; |
| 1032 | |
| 1033 | //! size of the grid (the grid is assumed a square so equal on each dimension) |
| 1034 | size_t sz; |
| 1035 | |
| 1036 | // Actual grid_key position |
| 1037 | grid_key_dx_r gk; |
| 1038 | |
| 1039 | public: |
| 1040 | |
| 1041 | /*! \brief Get the dimensionality of the iterator |
| 1042 | * |
| 1043 | * Get the dimensionality of the iterator |
| 1044 | * |
| 1045 | */ |
| 1046 | |
| 1047 | size_t getDim() |
| 1048 | { |
| 1049 | return dim; |
| 1050 | } |
| 1051 | |
| 1052 | /*! \brief Constructor |
| 1053 | * |
| 1054 | * \param n Dimensionality (how many i1 ... in you have) |
| 1055 | * \param sz Size of the grid on all dimensions range of the value i1 ... in can assume |
| 1056 | * |
| 1057 | */ |
| 1058 | |
| 1059 | Iterator_g_const(size_t n, size_t sz) |
| 1060 | :dim(n),sz(sz),gk(n) |
| 1061 | { |
| 1062 | // fill gk with the first grid element that satisfied the constrain: 0,1,2,3... dim |
| 1063 | |
| 1064 | for (size_t i = 0 ; i < dim ; i++) |
| 1065 | { |
| 1066 | gk.set_d(i,dim-i-1); |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | /*! \brief Get the next element |
| 1071 | * |
| 1072 | * Get the next element |
| 1073 | * |
| 1074 | * \return the next grid_key |
| 1075 | * |
| 1076 | */ |
| 1077 | |
| 1078 | Iterator_g_const & operator++() |
| 1079 | { |
| 1080 | //! increment the first index |
| 1081 | |
| 1082 | gk.set_d(0,gk.get(0)+1); |
| 1083 | |
| 1084 | //! check the overflow of all the index with exception of the last dimensionality |
| 1085 | |
| 1086 | unsigned int i = 0; |
| 1087 | for ( ; i < dim-1 ; i++) |
| 1088 | { |
| 1089 | size_t id = gk.get(i); |
| 1090 | if (id >= sz) |
| 1091 | { |
| 1092 | // ! overflow, increment the next index |
| 1093 | |
| 1094 | id = gk.get(i+1); |
| 1095 | if (id+i+2 >= sz) |
| 1096 | { |
| 1097 | // there is no-way to produce a valid key |
| 1098 | // there is not need to check the previous index |
| 1099 | // overflow i+1 |
| 1100 | |
| 1101 | gk.set_d(i+1,sz); |
| 1102 | } |
| 1103 | else |
| 1104 | { |
| 1105 | |
| 1106 | // reinitialize the previous index |
| 1107 | |
| 1108 | for (unsigned int s = 0 ; s <= i+1 ; s++) |
| 1109 | { |
| 1110 | gk.set_d(i+1-s,id+1+s); |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | else |
| 1115 | { |
| 1116 | break; |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | return *this; |
| 1121 | } |
| 1122 | |
| 1123 | /*! \brief Check if there is the next element |
| 1124 | * |
| 1125 | * Check if there is the next element |
| 1126 | * |
| 1127 | * \return true if there is the next, false otherwise |
| 1128 | * |
| 1129 | */ |
| 1130 | |
| 1131 | bool isNext() |
| 1132 | { |
| 1133 | // If dimensionless return immediately |
| 1134 | if (dim == 0) |
| 1135 | return false; |
| 1136 | |
| 1137 | if (gk.get(dim-1) < static_cast<mem_id>(sz-dim+1)) |
| 1138 | { |
| 1139 | //! we did not reach the end of the grid |
| 1140 | |
| 1141 | return true; |
| 1142 | } |
| 1143 | |
| 1144 | //! we reach the end of the grid |
| 1145 | return false; |
| 1146 | } |
| 1147 | |
| 1148 | /*! \brief Return the actual key |
| 1149 | * |
| 1150 | * Return the actual key |
| 1151 | * |
| 1152 | * \return The actual key that identify with the set of index |
| 1153 | * |
| 1154 | */ |
| 1155 | |
| 1156 | grid_key_dx_r & get() |
| 1157 | { |
| 1158 | return gk; |
| 1159 | } |
| 1160 | }; |
| 1161 | |
| 1162 | #endif |
| 1163 | |