| 1 | /* | 
| 2 |  * map_vector_sparse.hpp | 
| 3 |  * | 
| 4 |  *  Created on: Jan 22, 2019 | 
| 5 |  *      Author: i-bird | 
| 6 |  */ | 
| 7 |  | 
| 8 | #ifndef MAP_VECTOR_SPARSE_HPP_ | 
| 9 | #define MAP_VECTOR_SPARSE_HPP_ | 
| 10 |  | 
| 11 | #include "util/cuda_launch.hpp" | 
| 12 | #include "Vector/map_vector.hpp" | 
| 13 | #include "Vector/cuda/map_vector_sparse_cuda_ker.cuh" | 
| 14 | #include "Vector/cuda/map_vector_sparse_cuda_kernels.cuh" | 
| 15 | #include "util/cuda/ofp_context.hxx" | 
| 16 | #include <iostream> | 
| 17 | #include <limits> | 
| 18 |  | 
| 19 | #if defined(__NVCC__) | 
| 20 |   #if !defined(CUDA_ON_CPU) | 
| 21 | 	#include "util/cuda/moderngpu/kernel_segreduce.hxx" | 
| 22 | 	#include "util/cuda/moderngpu/kernel_merge.hxx" | 
| 23 |   #endif | 
| 24 |  #include "util/cuda/kernels.cuh" | 
| 25 | #endif | 
| 26 |  | 
| 27 | #include "util/cuda/scan_ofp.cuh" | 
| 28 | #include "util/cuda/sort_ofp.cuh" | 
| 29 |  | 
| 30 | enum flush_type | 
| 31 | { | 
| 32 | 	FLUSH_ON_HOST = 0, | 
| 33 | 	FLUSH_ON_DEVICE = 1, | 
| 34 | 	FLUSH_NO_DATA = 2 | 
| 35 | }; | 
| 36 |  | 
| 37 | template<typename OfpmVectorT> | 
| 38 | using ValueTypeOf = typename std::remove_reference<OfpmVectorT>::type::value_type; | 
| 39 |  | 
| 40 | namespace openfpm | 
| 41 | { | 
| 42 | 	// All props | 
| 43 | 	template<typename sg_type> | 
| 44 | 	struct htoD | 
| 45 | 	{ | 
| 46 | 		//! encapsulated source object | 
| 47 | 		sg_type & sg; | 
| 48 |  | 
| 49 | 		unsigned int lele; | 
| 50 |  | 
| 51 | 		htoD(sg_type & sg, unsigned int lele) | 
| 52 | 		:sg(sg),lele(lele) | 
| 53 | 		{}; | 
| 54 |  | 
| 55 |  | 
| 56 | 		//! It call the copy function for each property | 
| 57 | 		template<typename T> | 
| 58 | 		__device__ __host__ inline void operator()(T& t) const | 
| 59 | 		{ | 
| 60 | 			sg.template hostToDevice<T::value>(lele,lele); | 
| 61 | 		} | 
| 62 | 	}; | 
| 63 |  | 
| 64 |     constexpr int VECTOR_SPARSE_STANDARD = 1; | 
| 65 |     constexpr int VECTOR_SPARSE_BLOCK = 2; | 
| 66 |  | 
| 67 |     template<typename reduction_type, unsigned int impl> | 
| 68 |     struct cpu_block_process | 
| 69 |     { | 
| 70 |     	template<typename encap_src, typename encap_dst> | 
| 71 |     	static inline void process(encap_src & src, encap_dst & dst) | 
| 72 |     	{ | 
| 73 |     		dst = reduction_type::red(dst,src); | 
| 74 |     	} | 
| 75 |     }; | 
| 76 |  | 
| 77 |     template<typename reduction_type> | 
| 78 |     struct cpu_block_process<reduction_type,VECTOR_SPARSE_BLOCK> | 
| 79 |     { | 
| 80 |     	template<typename encap_src, typename encap_dst> | 
| 81 |     	static inline void process(encap_src & src, encap_dst & dst) | 
| 82 |     	{ | 
| 83 |     		for (size_t i = 0 ; i < encap_src::size ; i++) | 
| 84 |     		{ | 
| 85 |     			dst[i] = reduction_type::red(dst[i],src[i]); | 
| 86 |     		} | 
| 87 |     	} | 
| 88 |     }; | 
| 89 |  | 
| 90 |     template<typename reduction_type> | 
| 91 |     struct cpu_block_process<reduction_type,3> | 
| 92 |     { | 
| 93 |     	template<typename encap_src, typename encap_dst,unsigned int N1> | 
| 94 |     	static inline void process(encap_src & src, encap_dst (& dst)[N1]) | 
| 95 |     	{ | 
| 96 |     		for (unsigned int j = 0 ; j < N1 ; j++) | 
| 97 |     		{ | 
| 98 | 				for (size_t i = 0 ; i < encap_dst::size ; i++) | 
| 99 | 				{ | 
| 100 | 					dst[i] = reduction_type::red(dst[i][j],src[j][i]); | 
| 101 | 				} | 
| 102 |     		} | 
| 103 |     	} | 
| 104 |  | 
| 105 |     	template<unsigned int N1, unsigned int blockSize, typename encap_src, typename encap_dst> | 
| 106 |     	static inline void process_e(encap_src & src, encap_dst & dst) | 
| 107 |     	{ | 
| 108 |     		for (unsigned int j = 0 ; j < N1 ; j++) | 
| 109 |     		{ | 
| 110 | 				for (size_t i = 0 ; i < blockSize ; i++) | 
| 111 | 				{ | 
| 112 | 					dst[i] = reduction_type::red(dst[i][j],src[i][j]); | 
| 113 | 				} | 
| 114 |     		} | 
| 115 |     	} | 
| 116 |     }; | 
| 117 |  | 
| 118 |     /*! \brief Functor switch to select the vector sparse for standars scalar and blocked implementation | 
| 119 |      * | 
| 120 |      * | 
| 121 |      */ | 
| 122 |     template<unsigned int impl, typename block_functor> | 
| 123 |     struct scalar_block_implementation_switch // Case for scalar implementations | 
| 124 |     { | 
| 125 |         template <unsigned int p, typename vector_index_type> | 
| 126 |         static void extendSegments(vector_index_type & segments, size_t dataSize) | 
| 127 |         { | 
| 128 | #ifdef __NVCC__ | 
| 129 |             // Pass as there is nothing to append for mgpu | 
| 130 | #else // __NVCC__ | 
| 131 |             std::cout << __FILE__ << ":"  << __LINE__ << " error: this file is supposed to be compiled with nvcc"  << std::endl; | 
| 132 | #endif // __NVCC__ | 
| 133 |         } | 
| 134 |  | 
| 135 |         template <unsigned int pSegment, typename vector_reduction, typename T, typename vector_data_type, typename vector_index_type , typename vector_index_type2> | 
| 136 |         static void segreduce(vector_data_type & vector_data, | 
| 137 |         		vector_data_type & vector_data_unsorted, | 
| 138 |         		vector_index_type & vector_data_map, | 
| 139 |                 vector_index_type2 & segment_offset, | 
| 140 |                 vector_data_type & vector_data_red, | 
| 141 |                 block_functor & blf, | 
| 142 |                 mgpu::ofp_context_t & context) | 
| 143 |         { | 
| 144 | #ifdef __NVCC__ | 
| 145 |             typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 146 |             typedef typename boost::mpl::at<typename vector_data_type::value_type::type,typename reduction_type::prop>::type red_type; | 
| 147 |             typedef typename reduction_type::template op_red<red_type> red_op; | 
| 148 |             typedef typename boost::mpl::at<typename vector_index_type::value_type::type,boost::mpl::int_<0>>::type seg_type; | 
| 149 |             red_type init; | 
| 150 |             init = 0; | 
| 151 |  | 
| 152 |             assert((std::is_same<seg_type,int>::value == true)); | 
| 153 |  | 
| 154 |             mgpu::segreduce( | 
| 155 |                     (red_type *)vector_data.template getDeviceBuffer<reduction_type::prop::value>(), vector_data.size(), | 
| 156 |                     (int *)segment_offset.template getDeviceBuffer<1>(), segment_offset.size(), | 
| 157 |                     (red_type *)vector_data_red.template getDeviceBuffer<reduction_type::prop::value>(), | 
| 158 |                     red_op(), init, context); | 
| 159 | #else // __NVCC__ | 
| 160 |     std::cout << __FILE__ << ":"  << __LINE__ << " error: this file is supposed to be compiled with nvcc"  << std::endl; | 
| 161 | #endif // __NVCC__ | 
| 162 |         } | 
| 163 |  | 
| 164 |  | 
| 165 |         /*! \briefMerge all datas | 
| 166 |          * | 
| 167 |          * \param vct_index_old sorted vector of the old indexes | 
| 168 |          * \param vct_data_old vector of old data | 
| 169 |          * \param vct_index_out output indexes merged new and old indexes | 
| 170 |          * \param vct_index_merge_id indicate from where it come from the merged index (if the number is bigger than vct_index_old.size() | 
| 171 |          *                                                          the merged index come from the new data) | 
| 172 |          * \param vct_index_merge indexes old and new merged with conflicts | 
| 173 |          * \param vct_add_data_unique data to add (has been already reduced) | 
| 174 |          * \param vct_data_old old data | 
| 175 |          * \param vct_add_data data to add in its original form in the insert buffer | 
| 176 |          * \param vct_data_out reduced data vector new + old | 
| 177 |          * \param vct_index_dtmp temporal buffer vector used for intermediate calculation | 
| 178 |          * | 
| 179 |          */ | 
| 180 |         template < | 
| 181 |                 typename vector_data_type, | 
| 182 |                 typename vector_index_type, | 
| 183 |                 typename vector_index_type2, | 
| 184 |                 typename vector_index_dtmp_type, | 
| 185 |                 typename Ti, | 
| 186 |                 typename ... v_reduce> | 
| 187 |         static void solveConflicts( | 
| 188 |                 vector_index_type & vct_index_old, | 
| 189 |                 vector_index_type & vct_index_merge, | 
| 190 |                 vector_index_type & vct_index_merge_id, | 
| 191 |                 vector_index_type & vct_index_out, | 
| 192 |                 vector_index_dtmp_type & vct_index_dtmp, | 
| 193 |                 vector_index_type & data_map, | 
| 194 |                 vector_index_type2 & segments_new, | 
| 195 |                 vector_data_type & vct_data_old, | 
| 196 |                 vector_data_type & vct_add_data, | 
| 197 |                 vector_data_type & vct_add_data_unique, | 
| 198 |                 vector_data_type & vct_data_out, | 
| 199 |                 ite_gpu<1> & itew, | 
| 200 |                 block_functor & blf, | 
| 201 |                 mgpu::ofp_context_t & context | 
| 202 |                 ) | 
| 203 |         { | 
| 204 | #ifdef __NVCC__ | 
| 205 |  | 
| 206 |             CUDA_LAUNCH((solve_conflicts< | 
| 207 |                         decltype(vct_index_merge.toKernel()), | 
| 208 |                         decltype(vct_data_old.toKernel()), | 
| 209 |                         decltype(vct_index_dtmp.toKernel()), | 
| 210 |                         128, | 
| 211 |                         v_reduce ... | 
| 212 |                         >), | 
| 213 |             			itew, | 
| 214 |                                               vct_index_merge.toKernel(),vct_data_old.toKernel(), | 
| 215 |                                               vct_index_merge_id.toKernel(),vct_add_data_unique.toKernel(), | 
| 216 |                                               vct_index_out.toKernel(),vct_data_out.toKernel(), | 
| 217 |                                               vct_index_dtmp.toKernel(), | 
| 218 |                                               vct_index_old.size()); | 
| 219 |  | 
| 220 |                 // we scan tmp3 | 
| 221 |                 openfpm::scan( | 
| 222 |                         (Ti*)vct_index_dtmp.template getDeviceBuffer<0>(), | 
| 223 |                         vct_index_dtmp.size(), | 
| 224 |                         (Ti *)vct_index_dtmp.template getDeviceBuffer<1>(), | 
| 225 |                         context); | 
| 226 |  | 
| 227 |                 // get the size to resize vct_index and vct_data | 
| 228 |                 vct_index_dtmp.template deviceToHost<0,1>(vct_index_dtmp.size()-1,vct_index_dtmp.size()-1); | 
| 229 |                 int size = vct_index_dtmp.template get<1>(vct_index_dtmp.size()-1) + vct_index_dtmp.template get<0>(vct_index_dtmp.size()-1); | 
| 230 |  | 
| 231 |                 vct_index_old.resize(size); | 
| 232 |                 vct_data_old.resize(size); | 
| 233 |  | 
| 234 |                 CUDA_LAUNCH(realign,itew,vct_index_out.toKernel(),vct_data_out.toKernel(), | 
| 235 |                                       vct_index_old.toKernel(), vct_data_old.toKernel(), | 
| 236 |                                       vct_index_dtmp.toKernel()); | 
| 237 |  | 
| 238 |  | 
| 239 | #else // __NVCC__ | 
| 240 |             std::cout << __FILE__ << ":"  << __LINE__ << " error: this file is supposed to be compiled with nvcc"  << std::endl; | 
| 241 | #endif // __NVCC__ | 
| 242 |         } | 
| 243 |     }; | 
| 244 |  | 
| 245 |  | 
| 246 |     template<typename block_functor> | 
| 247 |     struct scalar_block_implementation_switch<2, block_functor> // Case for blocked implementations | 
| 248 |     { | 
| 249 |         template <unsigned int p, typename vector_index_type> | 
| 250 |         static void extendSegments(vector_index_type & segments, size_t dataSize) | 
| 251 |         { | 
| 252 | #ifdef __NVCC__ | 
| 253 |             // Append trailing element to segment (marks end of last segment) | 
| 254 |             segments.resize(segments.size()+1); | 
| 255 |             segments.template get<p>(segments.size() - 1) = dataSize; | 
| 256 |             segments.template hostToDevice<p>(segments.size() - 1, segments.size() - 1); | 
| 257 | #else // __NVCC__ | 
| 258 |             std::cout << __FILE__ << ":"  << __LINE__ << " error: this file is supposed to be compiled with nvcc"  << std::endl; | 
| 259 | #endif // __NVCC__ | 
| 260 |         } | 
| 261 |  | 
| 262 |         template <unsigned int pSegment, typename vector_reduction, typename T, typename vector_data_type, typename vector_index_type ,typename vector_index_type2> | 
| 263 |         static void segreduce(vector_data_type & vector_data, | 
| 264 |         					  vector_data_type & vector_data_unsorted, | 
| 265 |         					  vector_index_type & vector_data_map, | 
| 266 |         					  vector_index_type2 & segment_offset, | 
| 267 |         					  vector_data_type & vector_data_red, | 
| 268 |         					  block_functor & blf, | 
| 269 |         					  mgpu::ofp_context_t & context) | 
| 270 |         { | 
| 271 |  | 
| 272 |         } | 
| 273 |  | 
| 274 |         template < | 
| 275 |                 typename vector_data_type, | 
| 276 |                 typename vector_index_type, | 
| 277 |                 typename vector_index_type2, | 
| 278 |                 typename vector_index_dtmp_type, | 
| 279 |                 typename Ti, | 
| 280 |                 typename ... v_reduce> | 
| 281 |         static void solveConflicts( | 
| 282 |                 vector_index_type & vct_index_old, | 
| 283 |                 vector_index_type & vct_index_merge, | 
| 284 |                 vector_index_type & vct_index_merge_id, | 
| 285 |                 vector_index_type & vct_index_out, | 
| 286 |                 vector_index_dtmp_type & vct_index_dtmp, | 
| 287 |                 vector_index_type & data_map, | 
| 288 |                 vector_index_type2 & segments_new, | 
| 289 |                 vector_data_type & vct_data, | 
| 290 |                 vector_data_type & vct_add_data, | 
| 291 |                 vector_data_type & vct_add_data_unique, | 
| 292 |                 vector_data_type & vct_data_out, | 
| 293 |                 ite_gpu<1> & itew, | 
| 294 |                 block_functor & blf, | 
| 295 |                 mgpu::ofp_context_t & context | 
| 296 |         ) | 
| 297 |         { | 
| 298 | #ifdef __NVCC__ | 
| 299 |             blf.template solve_conflicts<1, | 
| 300 | 			            decltype(vct_index_merge), | 
| 301 | 			            decltype(segments_new), | 
| 302 | 			            decltype(vct_data), | 
| 303 | 			            v_reduce ...> | 
| 304 | 			            (vct_index_merge, vct_index_merge_id, segments_new, data_map, | 
| 305 | 			            vct_data, vct_add_data, | 
| 306 | 			            vct_index_old, vct_data_out, | 
| 307 | 			            context); | 
| 308 |                 vct_data_out.swap(vct_data); | 
| 309 |  | 
| 310 | #else // __NVCC__ | 
| 311 |             std::cout << __FILE__ << ":"  << __LINE__ << " error: this file is supposed to be compiled with nvcc"  << std::endl; | 
| 312 | #endif // __NVCC__ | 
| 313 |         } | 
| 314 |     }; | 
| 315 |  | 
| 316 | 	template<typename Ti> | 
| 317 | 	struct reorder | 
| 318 | 	{ | 
| 319 | 		Ti id; | 
| 320 | 		Ti id2; | 
| 321 |  | 
| 322 | 		bool operator<(const reorder & t) const | 
| 323 | 		{ | 
| 324 | 			return id < t.id; | 
| 325 | 		} | 
| 326 | 	}; | 
| 327 |  | 
| 328 | 	template<typename reduction_type, typename vector_reduction, typename T,unsigned int impl, typename red_type> | 
| 329 | 	struct sparse_vector_reduction_cpu_impl | 
| 330 | 	{ | 
| 331 | 		template<typename vector_data_type, typename vector_index_type,typename vector_index_type_reo> | 
| 332 | 		static inline void red(size_t & i, vector_data_type & vector_data_red, | 
| 333 | 				   vector_data_type & vector_data, | 
| 334 | 				   vector_index_type & vector_index, | 
| 335 | 				   vector_index_type_reo & reorder_add_index_cpu) | 
| 336 | 		{ | 
| 337 | 			size_t start = reorder_add_index_cpu.get(i).id; | 
| 338 | 			red_type red = vector_data.template get<reduction_type::prop::value>(i); | 
| 339 |  | 
| 340 | 			size_t j = 1; | 
| 341 | 			for ( ; i+j < reorder_add_index_cpu.size() && reorder_add_index_cpu.get(i+j).id == start ; j++) | 
| 342 | 			{ | 
| 343 | 				cpu_block_process<reduction_type,impl>::process(vector_data.template get<reduction_type::prop::value>(i+j),red); | 
| 344 | 				//reduction_type::red(red,vector_data.template get<reduction_type::prop::value>(i+j)); | 
| 345 | 			} | 
| 346 | 			vector_data_red.add(); | 
| 347 | 			vector_data_red.template get<reduction_type::prop::value>(vector_data_red.size()-1) = red; | 
| 348 |  | 
| 349 | 			if (T::value == 0) | 
| 350 | 			{ | 
| 351 | 				vector_index.add(); | 
| 352 | 				vector_index.template get<0>(vector_index.size() - 1) = reorder_add_index_cpu.get(i).id; | 
| 353 | 			} | 
| 354 |  | 
| 355 | 			i += j; | 
| 356 | 		} | 
| 357 | 	}; | 
| 358 |  | 
| 359 |  | 
| 360 | 	template<typename reduction_type, typename vector_reduction, typename T,unsigned int impl, typename red_type, unsigned int N1> | 
| 361 | 	struct sparse_vector_reduction_cpu_impl<reduction_type,vector_reduction,T,impl,red_type[N1]> | 
| 362 | 	{ | 
| 363 | 		template<typename vector_data_type, typename vector_index_type,typename vector_index_type_reo> | 
| 364 | 		static inline void red(size_t & i, vector_data_type & vector_data_red, | 
| 365 | 				   vector_data_type & vector_data, | 
| 366 | 				   vector_index_type & vector_index, | 
| 367 | 				   vector_index_type_reo & reorder_add_index_cpu) | 
| 368 | 		{ | 
| 369 | 			size_t start = reorder_add_index_cpu.get(i).id; | 
| 370 | 			red_type red[N1]; | 
| 371 |  | 
| 372 | 			for (size_t k = 0 ; k < N1 ; k++) | 
| 373 | 			{ | 
| 374 | 				red[k] = vector_data.template get<reduction_type::prop::value>(i)[k]; | 
| 375 | 			} | 
| 376 |  | 
| 377 | 			size_t j = 1; | 
| 378 | 			for ( ; i+j < reorder_add_index_cpu.size() && reorder_add_index_cpu.get(i+j).id == start ; j++) | 
| 379 | 			{ | 
| 380 | 				auto ev = vector_data.template get<reduction_type::prop::value>(i+j); | 
| 381 | 				cpu_block_process<reduction_type,impl+1>::process(ev,red); | 
| 382 | 				//reduction_type::red(red,vector_data.template get<reduction_type::prop::value>(i+j)); | 
| 383 | 			} | 
| 384 |  | 
| 385 | 			vector_data_red.add(); | 
| 386 |  | 
| 387 | 			for (size_t k = 0 ; k < N1 ; k++) | 
| 388 | 			{ | 
| 389 | 				vector_data_red.template get<reduction_type::prop::value>(vector_data_red.size()-1)[k] = red[k]; | 
| 390 | 			} | 
| 391 |  | 
| 392 | 			if (T::value == 0) | 
| 393 | 			{ | 
| 394 | 				vector_index.add(); | 
| 395 | 				vector_index.template get<0>(vector_index.size() - 1) = reorder_add_index_cpu.get(i).id; | 
| 396 | 			} | 
| 397 |  | 
| 398 | 			i += j; | 
| 399 | 		} | 
| 400 | 	}; | 
| 401 |  | 
| 402 | 	/*! \brief this class is a functor for "for_each" algorithm | 
| 403 | 	 * | 
| 404 | 	 * This class is a functor for "for_each" algorithm. For each | 
| 405 | 	 * element of the boost::vector the operator() is called. | 
| 406 | 	 * Is mainly used to copy one encap into another encap object | 
| 407 | 	 * | 
| 408 | 	 * \tparam encap source | 
| 409 | 	 * \tparam encap dst | 
| 410 | 	 * | 
| 411 | 	 */ | 
| 412 | 	template<typename vector_data_type, | 
| 413 | 			typename vector_index_type, | 
| 414 | 	        typename vector_index_type_reo, | 
| 415 | 	        typename vector_reduction, | 
| 416 | 	        unsigned int impl> | 
| 417 | 	struct sparse_vector_reduction_cpu | 
| 418 | 	{ | 
| 419 | 		//! Vector in which to the reduction | 
| 420 | 		vector_data_type & vector_data_red; | 
| 421 |  | 
| 422 | 		//! Vector in which to the reduction | 
| 423 | 		vector_data_type & vector_data; | 
| 424 |  | 
| 425 | 		//! reorder vector index | 
| 426 | 		vector_index_type_reo & reorder_add_index_cpu; | 
| 427 |  | 
| 428 | 		//! Index type vector | 
| 429 | 		vector_index_type & vector_index; | 
| 430 |  | 
| 431 | 		/*! \brief constructor | 
| 432 | 		 * | 
| 433 | 		 * \param src source encapsulated object | 
| 434 | 		 * \param dst source encapsulated object | 
| 435 | 		 * | 
| 436 | 		 */ | 
| 437 | 		inline sparse_vector_reduction_cpu(vector_data_type & vector_data_red, | 
| 438 | 									   vector_data_type & vector_data, | 
| 439 | 									   vector_index_type & vector_index, | 
| 440 | 									   vector_index_type_reo & reorder_add_index_cpu) | 
| 441 | 		:vector_data_red(vector_data_red),vector_data(vector_data),vector_index(vector_index),reorder_add_index_cpu(reorder_add_index_cpu) | 
| 442 | 		{}; | 
| 443 |  | 
| 444 | 		//! It call the copy function for each property | 
| 445 | 		template<typename T> | 
| 446 | 		inline void operator()(T& t) const | 
| 447 | 		{ | 
| 448 |             typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 449 |             typedef typename boost::mpl::at<typename ValueTypeOf<vector_data_type>::type,typename reduction_type::prop>::type red_type; | 
| 450 |  | 
| 451 |             if (reduction_type::is_special() == false) | 
| 452 | 			{ | 
| 453 |     			for (size_t i = 0 ; i < reorder_add_index_cpu.size() ; ) | 
| 454 |     			{ | 
| 455 |     				sparse_vector_reduction_cpu_impl<reduction_type,vector_reduction,T,impl,red_type>::red(i,vector_data_red,vector_data,vector_index,reorder_add_index_cpu); | 
| 456 |  | 
| 457 | /*    				size_t start = reorder_add_index_cpu.get(i).id; | 
| 458 |     				red_type red = vector_data.template get<reduction_type::prop::value>(i); | 
| 459 |  | 
| 460 |     				size_t j = 1; | 
| 461 |     				for ( ; i+j < reorder_add_index_cpu.size() && reorder_add_index_cpu.get(i+j).id == start ; j++) | 
| 462 |     				{ | 
| 463 |     					cpu_block_process<reduction_type,impl>::process(vector_data.template get<reduction_type::prop::value>(i+j),red); | 
| 464 |     					//reduction_type::red(red,vector_data.template get<reduction_type::prop::value>(i+j)); | 
| 465 |     				} | 
| 466 |     				vector_data_red.add(); | 
| 467 |     				vector_data_red.template get<reduction_type::prop::value>(vector_data_red.size()-1) = red; | 
| 468 |  | 
| 469 |     				if (T::value == 0) | 
| 470 |     				{ | 
| 471 |     					vector_index.add(); | 
| 472 |     					vector_index.template get<0>(vector_index.size() - 1) = reorder_add_index_cpu.get(i).id; | 
| 473 |     				} | 
| 474 |  | 
| 475 |     				i += j;*/ | 
| 476 |     			} | 
| 477 | 			} | 
| 478 | 		} | 
| 479 | 	}; | 
| 480 |  | 
| 481 | 	/*! \brief this class is a functor for "for_each" algorithm | 
| 482 | 	 * | 
| 483 | 	 * This class is a functor for "for_each" algorithm. For each | 
| 484 | 	 * element of the boost::vector the operator() is called. | 
| 485 | 	 * Is mainly used to copy one encap into another encap object | 
| 486 | 	 * | 
| 487 | 	 * \tparam encap source | 
| 488 | 	 * \tparam encap dst | 
| 489 | 	 * | 
| 490 | 	 */ | 
| 491 | 	template<typename encap_src, | 
| 492 | 			typename encap_dst, | 
| 493 | 	        typename vector_reduction> | 
| 494 | 	struct sparse_vector_reduction_solve_conflict_assign_cpu | 
| 495 | 	{ | 
| 496 | 		//! source | 
| 497 | 		encap_src & src; | 
| 498 |  | 
| 499 | 		//! destination | 
| 500 | 		encap_dst & dst; | 
| 501 |  | 
| 502 |  | 
| 503 | 		/*! \brief constructor | 
| 504 | 		 * | 
| 505 | 		 * \param src source encapsulated object | 
| 506 | 		 * \param dst source encapsulated object | 
| 507 | 		 * | 
| 508 | 		 */ | 
| 509 | 		inline sparse_vector_reduction_solve_conflict_assign_cpu(encap_src & src, encap_dst & dst) | 
| 510 | 		:src(src),dst(dst) | 
| 511 | 		{}; | 
| 512 |  | 
| 513 | 		//! It call the copy function for each property | 
| 514 | 		template<typename T> | 
| 515 | 		inline void operator()(T& t) const | 
| 516 | 		{ | 
| 517 |             typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 518 |  | 
| 519 |             dst.template get<reduction_type::prop::value>() = src.template get<reduction_type::prop::value>(); | 
| 520 | 		} | 
| 521 | 	}; | 
| 522 |  | 
| 523 |  | 
| 524 | 	template<unsigned int impl,typename vector_reduction, typename T,typename red_type> | 
| 525 | 	struct sparse_vector_reduction_solve_conflict_reduce_cpu_impl | 
| 526 | 	{ | 
| 527 | 		template<typename encap_src, typename encap_dst> | 
| 528 | 		static inline void red(encap_src & src, encap_dst & dst) | 
| 529 | 		{ | 
| 530 | 			typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 531 |  | 
| 532 | 			cpu_block_process<reduction_type,impl>::process(src.template get<reduction_type::prop::value>(),dst.template get<reduction_type::prop::value>()); | 
| 533 | 		} | 
| 534 | 	}; | 
| 535 |  | 
| 536 | 	template<unsigned int impl, typename vector_reduction, typename T,typename red_type, unsigned int N1> | 
| 537 | 	struct sparse_vector_reduction_solve_conflict_reduce_cpu_impl<impl,vector_reduction,T,red_type[N1]> | 
| 538 | 	{ | 
| 539 | 		template<typename encap_src, typename encap_dst> | 
| 540 | 		static inline void red(encap_src & src, encap_dst & dst) | 
| 541 | 		{ | 
| 542 |             typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 543 |  | 
| 544 | 			auto src_e = src.template get<reduction_type::prop::value>(); | 
| 545 | 			auto dst_e = dst.template get<reduction_type::prop::value>(); | 
| 546 |  | 
| 547 | 			cpu_block_process<reduction_type,impl+1>::template process_e<N1,red_type::size>(src_e,dst_e); | 
| 548 | 		} | 
| 549 | 	}; | 
| 550 |  | 
| 551 | 	/*! \brief this class is a functor for "for_each" algorithm | 
| 552 | 	 * | 
| 553 | 	 * This class is a functor for "for_each" algorithm. For each | 
| 554 | 	 * element of the boost::vector the operator() is called. | 
| 555 | 	 * Is mainly used to copy one encap into another encap object | 
| 556 | 	 * | 
| 557 | 	 * \tparam encap source | 
| 558 | 	 * \tparam encap dst | 
| 559 | 	 * | 
| 560 | 	 */ | 
| 561 | 	template<typename encap_src, | 
| 562 | 			typename encap_dst, | 
| 563 | 	        typename vector_reduction, | 
| 564 | 	        unsigned int impl> | 
| 565 | 	struct sparse_vector_reduction_solve_conflict_reduce_cpu | 
| 566 | 	{ | 
| 567 | 		//! source | 
| 568 | 		encap_src & src; | 
| 569 |  | 
| 570 | 		//! destination | 
| 571 | 		encap_dst & dst; | 
| 572 |  | 
| 573 |  | 
| 574 | 		/*! \brief constructor | 
| 575 | 		 * | 
| 576 | 		 * \param src source encapsulated object | 
| 577 | 		 * \param dst source encapsulated object | 
| 578 | 		 * | 
| 579 | 		 */ | 
| 580 | 		inline sparse_vector_reduction_solve_conflict_reduce_cpu(encap_src & src, encap_dst & dst) | 
| 581 | 		:src(src),dst(dst) | 
| 582 | 		{}; | 
| 583 |  | 
| 584 | 		//! It call the copy function for each property | 
| 585 | 		template<typename T> | 
| 586 | 		inline void operator()(T& t) const | 
| 587 | 		{ | 
| 588 |             typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 589 |             typedef typename boost::mpl::at<typename encap_src::T_type::type, typename reduction_type::prop>::type red_type; | 
| 590 |  | 
| 591 |             sparse_vector_reduction_solve_conflict_reduce_cpu_impl<impl,vector_reduction,T,red_type>::red(src,dst); | 
| 592 |  | 
| 593 | //            cpu_block_process<reduction_type,impl>::process(src.template get<reduction_type::prop::value>(),dst.template get<reduction_type::prop::value>()); | 
| 594 | //            reduction_type::red(dst.template get<reduction_type::prop::value>(),src.template get<reduction_type::prop::value>()); | 
| 595 | 		} | 
| 596 | 	}; | 
| 597 |  | 
| 598 | 	/*! \brief this class is a functor for "for_each" algorithm | 
| 599 | 	 * | 
| 600 | 	 * This class is a functor for "for_each" algorithm. For each | 
| 601 | 	 * element of the boost::vector the operator() is called. | 
| 602 | 	 * Is mainly used to copy one encap into another encap object | 
| 603 | 	 * | 
| 604 | 	 * \tparam encap source | 
| 605 | 	 * \tparam encap dst | 
| 606 | 	 * | 
| 607 | 	 */ | 
| 608 | 	template<typename vector_data_type, | 
| 609 | 			typename vector_index_type, | 
| 610 | 	        typename vector_index_type2, | 
| 611 | 	        typename vector_reduction, | 
| 612 | 	        typename block_functor, | 
| 613 | 	        unsigned int impl2, unsigned int pSegment=1> | 
| 614 | 	struct sparse_vector_reduction | 
| 615 | 	{ | 
| 616 | 		//! Vector in which to the reduction | 
| 617 | 		vector_data_type & vector_data_red; | 
| 618 |  | 
| 619 | 		//! new datas | 
| 620 | 		vector_data_type & vector_data; | 
| 621 |  | 
| 622 | 		//! new data in an unsorted way | 
| 623 | 		vector_data_type & vector_data_unsorted; | 
| 624 |  | 
| 625 | 		//! segment of offsets | 
| 626 | 		vector_index_type2 & segment_offset; | 
| 627 |  | 
| 628 | 		//! map of the data | 
| 629 | 		vector_index_type & vector_data_map; | 
| 630 |  | 
| 631 | 		//! block functor | 
| 632 | 		block_functor & blf; | 
| 633 |  | 
| 634 | 		//! gpu context | 
| 635 | 		mgpu::ofp_context_t & context; | 
| 636 |  | 
| 637 | 		/*! \brief constructor | 
| 638 | 		 * | 
| 639 | 		 * \param src source encapsulated object | 
| 640 | 		 * \param dst source encapsulated object | 
| 641 | 		 * | 
| 642 | 		 */ | 
| 643 | 		inline sparse_vector_reduction(vector_data_type & vector_data_red, | 
| 644 | 									   vector_data_type & vector_data, | 
| 645 | 									   vector_data_type & vector_data_unsorted, | 
| 646 | 									   vector_index_type & vector_data_map, | 
| 647 | 									   vector_index_type2 & segment_offset, | 
| 648 | 									   block_functor & blf, | 
| 649 | 									   mgpu::ofp_context_t & context) | 
| 650 | 		:vector_data_red(vector_data_red), | 
| 651 | 		 vector_data(vector_data), | 
| 652 | 		 vector_data_unsorted(vector_data_unsorted), | 
| 653 | 		 segment_offset(segment_offset), | 
| 654 | 		 vector_data_map(vector_data_map), | 
| 655 | 		 blf(blf), | 
| 656 | 		 context(context) | 
| 657 | 		{}; | 
| 658 |  | 
| 659 | 		//! It call the copy function for each property | 
| 660 | 		template<typename T> | 
| 661 | 		inline void operator()(T& t) const | 
| 662 | 		{ | 
| 663 | #ifdef __NVCC__ | 
| 664 |  | 
| 665 |             typedef typename boost::mpl::at<vector_reduction, T>::type reduction_type; | 
| 666 |             typedef typename boost::mpl::at<typename ValueTypeOf<vector_data_type>::type,typename reduction_type::prop>::type red_type; | 
| 667 |             if (reduction_type::is_special() == false) | 
| 668 | 			{ | 
| 669 | 			    scalar_block_implementation_switch<impl2, block_functor>::template segreduce<pSegment, vector_reduction, T>( | 
| 670 | 			            vector_data, | 
| 671 | 			            vector_data_unsorted, | 
| 672 | 			            vector_data_map, | 
| 673 | 			            segment_offset, | 
| 674 | 			            vector_data_red, | 
| 675 | 			            blf, | 
| 676 | 			            context); | 
| 677 | 			} | 
| 678 | #else | 
| 679 | 			std::cout << __FILE__ << ":"  << __LINE__ << " error: this file is supposed to be compiled with nvcc"  << std::endl; | 
| 680 | #endif | 
| 681 | 		} | 
| 682 | 	}; | 
| 683 |  | 
| 684 |  | 
| 685 | 	struct stub_block_functor | 
| 686 | 	{ | 
| 687 |         template<unsigned int pSegment, typename vector_reduction, typename T, typename vector_index_type, typename vector_data_type> | 
| 688 | 		static bool seg_reduce(vector_index_type & segments, vector_data_type & src, vector_data_type &  dst) | 
| 689 | 		{ | 
| 690 | 			return true; | 
| 691 | 		} | 
| 692 |  | 
| 693 | 		template<typename vector_index_type, typename vector_data_type, typename ... v_reduce> | 
| 694 | 		static bool solve_conflicts(vector_index_type &keys, vector_index_type &merge_indices, | 
| 695 |                                     vector_data_type &data1, vector_data_type &data2, | 
| 696 |                                     vector_index_type &indices_tmp, vector_data_type &data_tmp, | 
| 697 |                                     vector_index_type &keysOut, vector_data_type &dataOut, | 
| 698 |                                     mgpu::ofp_context_t & context) | 
| 699 | 		{ | 
| 700 | 			return true; | 
| 701 | 		} | 
| 702 |  | 
| 703 | 		openfpm::vector_gpu<aggregate<unsigned int>> outputMap; | 
| 704 |  | 
| 705 |         openfpm::vector_gpu<aggregate<unsigned int>> & get_outputMap() | 
| 706 | 		{ | 
| 707 |         	return outputMap; | 
| 708 | 		} | 
| 709 |  | 
| 710 |         const openfpm::vector_gpu<aggregate<unsigned int>> & get_outputMap() const | 
| 711 | 		{ | 
| 712 |         	return outputMap; | 
| 713 | 		} | 
| 714 | 	}; | 
| 715 |  | 
| 716 | 	/*! \brief this class is a functor for "for_each" algorithm | 
| 717 | 	 * | 
| 718 | 	 * This class is a functor for "for_each" algorithm. For each | 
| 719 | 	 * element of the boost::vector the operator() is called. | 
| 720 | 	 * Is mainly used to copy one encap into another encap object | 
| 721 | 	 * | 
| 722 | 	 * \tparam encap source | 
| 723 | 	 * \tparam encap dst | 
| 724 | 	 * | 
| 725 | 	 */ | 
| 726 | 	template<typename vector_data_type, typename vector_index_type, typename vector_reduction> | 
| 727 | 	struct sparse_vector_special | 
| 728 | 	{ | 
| 729 | 		//! Vector in which to the reduction | 
| 730 | 		vector_data_type & vector_data_red; | 
| 731 |  | 
| 732 | 		//! Vector in which to the reduction | 
| 733 | 		vector_data_type & vector_data; | 
| 734 |  | 
| 735 | 		//! segment of offsets | 
| 736 | 		vector_index_type & segment_offset; | 
| 737 |  | 
| 738 | 		//! gpu context | 
| 739 | 		mgpu::ofp_context_t & context; | 
| 740 |  | 
| 741 | 		/*! \brief constructor | 
| 742 | 		 * | 
| 743 | 		 * \param src source encapsulated object | 
| 744 | 		 * \param dst source encapsulated object | 
| 745 | 		 * | 
| 746 | 		 */ | 
| 747 | 		inline sparse_vector_special(vector_data_type & vector_data_red, | 
| 748 | 									   vector_data_type & vector_data, | 
| 749 | 									   vector_index_type & segment_offset, | 
| 750 | 									   mgpu::ofp_context_t & context) | 
| 751 | 		:vector_data_red(vector_data_red),vector_data(vector_data),segment_offset(segment_offset),context(context) | 
| 752 | 		{}; | 
| 753 |  | 
| 754 | 		//! It call the copy function for each property | 
| 755 | 		template<typename T> | 
| 756 | 		inline void operator()(T& t) const | 
| 757 | 		{ | 
| 758 | #ifdef __NVCC__ | 
| 759 |  | 
| 760 | 			typedef typename boost::mpl::at<vector_reduction,T>::type reduction_type; | 
| 761 |  | 
| 762 | 			// reduction type | 
| 763 | 			typedef typename boost::mpl::at<typename vector_data_type::value_type::type,typename reduction_type::prop>::type red_type; | 
| 764 |  | 
| 765 | 			if (reduction_type::is_special() == true) | 
| 766 | 			{ | 
| 767 | 				auto ite = segment_offset.getGPUIterator(); | 
| 768 |  | 
| 769 | 				CUDA_LAUNCH((reduce_from_offset<decltype(segment_offset.toKernel()),decltype(vector_data_red.toKernel()),reduction_type>), | 
| 770 | 															ite,segment_offset.toKernel(),vector_data_red.toKernel(),vector_data.size()); | 
| 771 | 			} | 
| 772 |  | 
| 773 | #else | 
| 774 | 			std::cout << __FILE__ << ":"  << __LINE__ << " error: this file si supposed to be compiled with nvcc"  << std::endl; | 
| 775 | #endif | 
| 776 | 		} | 
| 777 | 	}; | 
| 778 |  | 
| 779 | 	template<typename T, | 
| 780 | 			 typename Ti = long int, | 
| 781 | 			 typename Memory=HeapMemory, | 
| 782 | 			 typename layout=typename memory_traits_lin<T>::type, | 
| 783 | 			 template<typename> class layout_base=memory_traits_lin , | 
| 784 | 			 typename grow_p=grow_policy_double, | 
| 785 | 			 unsigned int impl=vect_isel<T>::value, | 
| 786 | 			 unsigned int impl2 = VECTOR_SPARSE_STANDARD, | 
| 787 | 			 typename block_functor = stub_block_functor> | 
| 788 | 	class vector_sparse | 
| 789 | 	{ | 
| 790 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_index; | 
| 791 | 		vector<T,Memory,layout_base,grow_p,impl> vct_data; | 
| 792 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_m_index; | 
| 793 |  | 
| 794 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_add_index; | 
| 795 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_rem_index; | 
| 796 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_nadd_index; | 
| 797 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_nrem_index; | 
| 798 | 		vector<T,Memory,layout_base,grow_p> vct_add_data; | 
| 799 | 		vector<T,Memory,layout_base,grow_p> vct_add_data_reord; | 
| 800 |  | 
| 801 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_add_index_cont_0; | 
| 802 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_add_index_cont_1; | 
| 803 | 		vector<T,Memory,layout_base,grow_p> vct_add_data_cont; | 
| 804 | 		vector<aggregate<Ti,Ti>,Memory,layout_base,grow_p> vct_add_index_unique; | 
| 805 | 		vector<aggregate<int,int>,Memory,layout_base,grow_p> segments_int; | 
| 806 |  | 
| 807 | 		vector<T,Memory,layout_base,grow_p,impl> vct_add_data_unique; | 
| 808 |  | 
| 809 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_index_tmp4; | 
| 810 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_index_tmp; | 
| 811 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_index_tmp2; | 
| 812 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_index_tmp3; | 
| 813 | 		vector<aggregate<Ti,Ti,Ti>,Memory,layout_base,grow_p> vct_index_dtmp; | 
| 814 |  | 
| 815 | 		// segments map (This is used only in case of Blocked data) | 
| 816 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_segment_index_map; | 
| 817 |  | 
| 818 | 		block_functor blf; | 
| 819 |  | 
| 820 | 		T bck; | 
| 821 |  | 
| 822 | 		CudaMemory mem; | 
| 823 |  | 
| 824 | 		openfpm::vector<reorder<Ti>> reorder_add_index_cpu; | 
| 825 |  | 
| 826 | 		size_t max_ele; | 
| 827 |  | 
| 828 | 		int n_gpu_add_block_slot = 0; | 
| 829 | 		int n_gpu_rem_block_slot = 0; | 
| 830 |  | 
| 831 | 		/*! \brief get the element i | 
| 832 | 		 * | 
| 833 | 		 * search the element x | 
| 834 | 		 * | 
| 835 | 		 * \param i element i | 
| 836 | 		 */ | 
| 837 | 		template<bool prefetch> | 
| 838 | 		inline Ti _branchfree_search_nobck(Ti x, Ti & id) const | 
| 839 | 		{ | 
| 840 | 			if (vct_index.size() == 0)	{id = 0; return -1;} | 
| 841 | 			const Ti *base = &vct_index.template get<0>(0); | 
| 842 | 			const Ti *end = (const Ti *)vct_index.template getPointer<0>() + vct_index.size(); | 
| 843 | 			Ti n = vct_data.size()-1; | 
| 844 | 			while (n > 1) | 
| 845 | 			{ | 
| 846 | 				Ti half = n / 2; | 
| 847 | 				if (prefetch) | 
| 848 | 				{ | 
| 849 | 					__builtin_prefetch(base + half/2, 0, 0); | 
| 850 | 					__builtin_prefetch(base + half + half/2, 0, 0); | 
| 851 | 				} | 
| 852 | 				base = (base[half] < x) ? base+half : base; | 
| 853 | 				n -= half; | 
| 854 | 			} | 
| 855 |  | 
| 856 | 			int off = (*base < x); | 
| 857 | 			id = base - &vct_index.template get<0>(0) + off; | 
| 858 | 			return (base + off != end)?*(base + off):-1; | 
| 859 | 		} | 
| 860 |  | 
| 861 | 		/*! \brief get the element i | 
| 862 | 		 * | 
| 863 | 		 * search the element x | 
| 864 | 		 * | 
| 865 | 		 * \param i element i | 
| 866 | 		 */ | 
| 867 | 		template<bool prefetch> | 
| 868 | 		inline void _branchfree_search(Ti x, Ti & id) const | 
| 869 | 		{ | 
| 870 | 			Ti v = _branchfree_search_nobck<prefetch>(x,id); | 
| 871 | 			id = (x == v)?id:vct_data.size()-1; | 
| 872 | 		} | 
| 873 |  | 
| 874 |  | 
| 875 | 		/* \brief take the indexes for the insertion pools and create a continuos array | 
| 876 | 		 * | 
| 877 | 		 * \param vct_nadd_index number of insertions of each pool | 
| 878 | 		 * \param vct_add_index pool of inserts | 
| 879 | 		 * \param vct_add_cont_index output continuos array of inserted indexes | 
| 880 | 		 * \param vct_add_data array of added data | 
| 881 | 		 * \param vct_add_data_cont continuos array of inserted data | 
| 882 | 		 * \param contect mgpu context | 
| 883 | 		 * | 
| 884 | 		 */ | 
| 885 | 		size_t make_continuos(vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_nadd_index, | 
| 886 | 							  vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index, | 
| 887 | 							  vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_cont_index, | 
| 888 | 							  vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_cont_index_map, | 
| 889 | 							  vector<T,Memory,layout_base,grow_p> & vct_add_data, | 
| 890 | 							  vector<T,Memory,layout_base,grow_p> & vct_add_data_cont, | 
| 891 | 							  mgpu::ofp_context_t & context) | 
| 892 | 		{ | 
| 893 | #ifdef __NVCC__ | 
| 894 |  | 
| 895 | 			// Add 0 to the last element to vct_nadd_index | 
| 896 | 			vct_nadd_index.resize(vct_nadd_index.size()+1); | 
| 897 | 			vct_nadd_index.template get<0>(vct_nadd_index.size()-1) = 0; | 
| 898 | 			vct_nadd_index.template hostToDevice<0>(vct_nadd_index.size()-1,vct_nadd_index.size()-1); | 
| 899 |  | 
| 900 | 			// Merge the list of inserted points for each block | 
| 901 | 			vct_index_tmp4.resize(vct_nadd_index.size()); | 
| 902 |  | 
| 903 | 			openfpm::scan((Ti *)vct_nadd_index.template getDeviceBuffer<0>(), | 
| 904 | 			            vct_nadd_index.size(), | 
| 905 | 			            (Ti *)vct_index_tmp4.template getDeviceBuffer<0>() , | 
| 906 |                         context); | 
| 907 |  | 
| 908 | 			vct_index_tmp4.template deviceToHost<0>(vct_index_tmp4.size()-1,vct_index_tmp4.size()-1); | 
| 909 | 			size_t n_ele = vct_index_tmp4.template get<0>(vct_index_tmp4.size()-1); | 
| 910 |  | 
| 911 | 			// we reuse vct_nadd_index | 
| 912 | 			vct_add_cont_index.resize(n_ele); | 
| 913 | 			vct_add_cont_index_map.resize(n_ele); | 
| 914 |  | 
| 915 | 			if (impl2 == VECTOR_SPARSE_STANDARD) | 
| 916 | 			{ | 
| 917 | 				vct_add_data_cont.resize(n_ele); | 
| 918 | 			} | 
| 919 | 			else | 
| 920 | 			{ | 
| 921 | 				vct_segment_index_map.resize(n_ele); | 
| 922 | 			} | 
| 923 |  | 
| 924 | 			if (n_gpu_add_block_slot >= 128) | 
| 925 | 			{ | 
| 926 | 				ite_gpu<1> itew; | 
| 927 | 				itew.wthr.x = vct_nadd_index.size()-1; | 
| 928 | 				itew.wthr.y = 1; | 
| 929 | 				itew.wthr.z = 1; | 
| 930 | 				itew.thr.x = 128; | 
| 931 | 				itew.thr.y = 1; | 
| 932 | 				itew.thr.z = 1; | 
| 933 |  | 
| 934 | 				CUDA_LAUNCH(construct_insert_list_key_only,itew,vct_add_index.toKernel(), | 
| 935 | 									vct_nadd_index.toKernel(), | 
| 936 | 									vct_index_tmp4.toKernel(), | 
| 937 | 									vct_add_cont_index.toKernel(), | 
| 938 | 									vct_add_cont_index_map.toKernel(), | 
| 939 | 									n_gpu_add_block_slot); | 
| 940 | 			} | 
| 941 | 			else | 
| 942 | 			{ | 
| 943 | 				auto itew = vct_add_index.getGPUIterator(); | 
| 944 |  | 
| 945 | 				CUDA_LAUNCH(construct_insert_list_key_only_small_pool,itew,vct_add_index.toKernel(), | 
| 946 | 									vct_nadd_index.toKernel(), | 
| 947 | 									vct_index_tmp4.toKernel(), | 
| 948 | 									vct_add_cont_index.toKernel(), | 
| 949 | 									vct_add_cont_index_map.toKernel(), | 
| 950 | 									n_gpu_add_block_slot); | 
| 951 | 			} | 
| 952 |  | 
| 953 | 			return n_ele; | 
| 954 | #endif | 
| 955 | 			return 0; | 
| 956 | 		} | 
| 957 |  | 
| 958 | 		/*! \brief sort the continuos array of inserted key | 
| 959 | 		 * | 
| 960 | 		 * \param context modern gpu context | 
| 961 | 		 * \param vct_add_cont_index array of indexes (unsorted), as output will be sorted | 
| 962 | 		 * \param vct_add_cont_index_map reference to the original indexes | 
| 963 | 		 * \param vct_add_data_reord sorted data output | 
| 964 | 		 * \param vct_add_data_cont added data in a continuos unsorted array | 
| 965 | 		 * | 
| 966 | 		 */ | 
| 967 | 		void reorder_indexes(vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_cont_index, | 
| 968 | 							 vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_cont_index_map, | 
| 969 | 							 vector<T,Memory,layout_base,grow_p> & vct_add_data_reord, | 
| 970 | 							 vector<T,Memory,layout_base,grow_p> & vct_add_data_cont, | 
| 971 | 							 mgpu::ofp_context_t & context) | 
| 972 | 		{ | 
| 973 | #ifdef __NVCC__ | 
| 974 | 			ite_gpu<1> itew; | 
| 975 | 			itew.wthr.x = vct_nadd_index.size()-1; | 
| 976 | 			itew.wthr.y = 1; | 
| 977 | 			itew.wthr.z = 1; | 
| 978 | 			itew.thr.x = 128; | 
| 979 | 			itew.thr.y = 1; | 
| 980 | 			itew.thr.z = 1; | 
| 981 |  | 
| 982 | 			size_t n_ele = vct_add_cont_index.size(); | 
| 983 |  | 
| 984 | 			n_gpu_add_block_slot = 0; | 
| 985 |  | 
| 986 | 			// now we sort | 
| 987 | 			openfpm::sort( | 
| 988 | 			        (Ti *)vct_add_cont_index.template getDeviceBuffer<0>(), | 
| 989 |                     (Ti *)vct_add_cont_index_map.template getDeviceBuffer<0>(), | 
| 990 | 					vct_add_cont_index.size(), | 
| 991 | 					mgpu::template less_t<Ti>(), | 
| 992 |                     context); | 
| 993 |  | 
| 994 | 			auto ite = vct_add_cont_index.getGPUIterator(); | 
| 995 |  | 
| 996 | 			// Now we reorder the data vector accordingly to the indexes | 
| 997 |  | 
| 998 | 			if (impl2 == VECTOR_SPARSE_STANDARD) | 
| 999 | 			{ | 
| 1000 | 				vct_add_data_reord.resize(n_ele); | 
| 1001 | 				CUDA_LAUNCH(reorder_vector_data,ite,vct_add_cont_index_map.toKernel(),vct_add_data_cont.toKernel(),vct_add_data_reord.toKernel()); | 
| 1002 | 			} | 
| 1003 |  | 
| 1004 | #endif | 
| 1005 | 		} | 
| 1006 |  | 
| 1007 | 		/*! \brief Merge indexes | 
| 1008 | 		 * | 
| 1009 | 		 * \param | 
| 1010 | 		 * | 
| 1011 | 		 * | 
| 1012 | 		 */ | 
| 1013 | 		template<typename ... v_reduce> | 
| 1014 | 		void merge_indexes(vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index_sort, | 
| 1015 | 						   vector<aggregate<Ti,Ti>,Memory,layout_base,grow_p> & vct_add_index_unique, | 
| 1016 | 				  	  	   vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_merge_index, | 
| 1017 | 				  	  	   vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_merge_index_map, | 
| 1018 | 				  	  	   mgpu::ofp_context_t & context) | 
| 1019 | 		{ | 
| 1020 | #ifdef __NVCC__ | 
| 1021 |  | 
| 1022 | 			typedef boost::mpl::vector<v_reduce...> vv_reduce; | 
| 1023 |  | 
| 1024 | 			auto ite = vct_add_index_sort.getGPUIterator(); | 
| 1025 |  | 
| 1026 | 			mem.allocate(sizeof(int)); | 
| 1027 | 			mem.fill(0); | 
| 1028 | 			vct_add_index_unique.resize(vct_add_index_sort.size()+1); | 
| 1029 |  | 
| 1030 | 			ite = vct_add_index_sort.getGPUIterator(); | 
| 1031 |  | 
| 1032 | 			vct_index_tmp4.resize(vct_add_index_sort.size()+1); | 
| 1033 |  | 
| 1034 | 			CUDA_LAUNCH( | 
| 1035 | 					( | 
| 1036 | 						find_buffer_offsets_for_scan | 
| 1037 | 								<0, | 
| 1038 | 								decltype(vct_add_index_sort.toKernel()), | 
| 1039 | 								decltype(vct_index_tmp4.toKernel()) | 
| 1040 | 								> | 
| 1041 | 					), | 
| 1042 | 					ite, | 
| 1043 | 					vct_add_index_sort.toKernel(), | 
| 1044 | 					vct_index_tmp4.toKernel()); | 
| 1045 |  | 
| 1046 | 			openfpm::scan((Ti *)vct_index_tmp4.template getDeviceBuffer<0>(),vct_index_tmp4.size(),(Ti *)vct_index_tmp4.template getDeviceBuffer<0>(),context); | 
| 1047 |  | 
| 1048 | 			vct_index_tmp4.template deviceToHost<0>(vct_index_tmp4.size()-1,vct_index_tmp4.size()-1); | 
| 1049 | 			int n_ele_unique = vct_index_tmp4.template get<0>(vct_index_tmp4.size()-1); | 
| 1050 |  | 
| 1051 | 			vct_add_index_unique.resize(n_ele_unique); | 
| 1052 |  | 
| 1053 | 			if (impl2 == VECTOR_SPARSE_STANDARD) | 
| 1054 | 			{ | 
| 1055 | 				vct_add_data_unique.resize(n_ele_unique); | 
| 1056 | 			} | 
| 1057 |  | 
| 1058 | 			CUDA_LAUNCH( | 
| 1059 | 					(construct_index_unique<0>), | 
| 1060 | 					ite, | 
| 1061 | 					vct_add_index_sort.toKernel(), | 
| 1062 | 					vct_index_tmp4.toKernel(), | 
| 1063 | 					vct_add_index_unique.toKernel()); | 
| 1064 |  | 
| 1065 | 			typedef boost::mpl::vector<v_reduce...> vv_reduce; | 
| 1066 |  | 
| 1067 | 			// Then we merge the two list vct_index and vct_add_index_unique | 
| 1068 |  | 
| 1069 | 			// index to get merge index | 
| 1070 | 			vct_m_index.resize(vct_index.size()); | 
| 1071 |  | 
| 1072 | 			if (vct_m_index.size() != 0) | 
| 1073 | 			{ | 
| 1074 | 				ite = vct_m_index.getGPUIterator(); | 
| 1075 | 				CUDA_LAUNCH((set_indexes<0>),ite,vct_m_index.toKernel(),0); | 
| 1076 | 			} | 
| 1077 |  | 
| 1078 | 			// after merge we solve the last conflicts, running across the vector again and spitting 1 when there is something to merge | 
| 1079 | 			// we reorder the data array also | 
| 1080 |  | 
| 1081 | 			vct_merge_index.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1082 | 			vct_merge_index_map.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1083 | 			vct_index_tmp3.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1084 |  | 
| 1085 | 			// Do not delete this reserve | 
| 1086 | 			// Unfortunately all resize with DataBlocks are broken | 
| 1087 | 			if (impl2 == VECTOR_SPARSE_STANDARD) | 
| 1088 | 			{ | 
| 1089 | 				vct_add_data_cont.reserve(vct_index.size() + vct_add_index_unique.size()+1); | 
| 1090 | 				vct_add_data_cont.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1091 | 			} | 
| 1092 |  | 
| 1093 | 			ite = vct_add_index_unique.getGPUIterator(); | 
| 1094 | 			vct_index_tmp4.resize(vct_add_index_unique.size()); | 
| 1095 | 			CUDA_LAUNCH((set_indexes<0>),ite,vct_index_tmp4.toKernel(),vct_index.size()); | 
| 1096 |  | 
| 1097 | 			ite_gpu<1> itew; | 
| 1098 |  | 
| 1099 | 			itew.wthr.x = vct_merge_index.size() / 128 + (vct_merge_index.size() % 128 != 0); | 
| 1100 | 			itew.wthr.y = 1; | 
| 1101 | 			itew.wthr.z = 1; | 
| 1102 | 			itew.thr.x = 128; | 
| 1103 | 			itew.thr.y = 1; | 
| 1104 | 			itew.thr.z = 1; | 
| 1105 |  | 
| 1106 | 			vct_index_dtmp.resize(itew.wthr.x); | 
| 1107 |  | 
| 1108 | 			// we merge with vct_index with vct_add_index_unique in vct_merge_index, vct_merge_index contain the merged indexes | 
| 1109 | 			// | 
| 1110 |  | 
| 1111 | 			mgpu::merge((Ti *)vct_index.template getDeviceBuffer<0>(),(Ti *)vct_m_index.template getDeviceBuffer<0>(),vct_index.size(), | 
| 1112 | 						(Ti *)vct_add_index_unique.template getDeviceBuffer<0>(),(Ti *)vct_index_tmp4.template getDeviceBuffer<0>(),vct_add_index_unique.size(), | 
| 1113 | 						(Ti *)vct_merge_index.template getDeviceBuffer<0>(),(Ti *)vct_merge_index_map.template getDeviceBuffer<0>(),mgpu::less_t<Ti>(),context); | 
| 1114 |  | 
| 1115 |  | 
| 1116 | #endif | 
| 1117 | 		} | 
| 1118 |  | 
| 1119 |  | 
| 1120 |  | 
| 1121 | 		template<typename ... v_reduce> | 
| 1122 | 		void merge_datas(vector<T,Memory,layout_base,grow_p> & vct_add_data_reord, | 
| 1123 | 						 vector<aggregate<Ti,Ti>,Memory,layout_base,grow_p> & segments_new, | 
| 1124 | 						 vector<T,Memory,layout_base,grow_p> & vct_add_data, | 
| 1125 | 						 vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_data_reord_map, | 
| 1126 | 				  	  	   mgpu::ofp_context_t & context) | 
| 1127 | 		{ | 
| 1128 | #ifdef __NVCC__ | 
| 1129 | 			ite_gpu<1> itew; | 
| 1130 | 			itew.wthr.x = vct_index_tmp.size() / 128 + (vct_index_tmp.size() % 128 != 0); | 
| 1131 | 			itew.wthr.y = 1; | 
| 1132 | 			itew.wthr.z = 1; | 
| 1133 | 			itew.thr.x = 128; | 
| 1134 | 			itew.thr.y = 1; | 
| 1135 | 			itew.thr.z = 1; | 
| 1136 |  | 
| 1137 | 			typedef boost::mpl::vector<v_reduce...> vv_reduce; | 
| 1138 |  | 
| 1139 | 			//////////////////////////////////////////////////////////////////////////////////////////////////// | 
| 1140 |  | 
| 1141 | 			// Now we can do a segmented reduction | 
| 1142 | 			scalar_block_implementation_switch<impl2, block_functor> | 
| 1143 | 			        ::template extendSegments<1>(vct_add_index_unique, vct_add_data_reord_map.size()); | 
| 1144 |  | 
| 1145 | 			if (impl2 == VECTOR_SPARSE_STANDARD) | 
| 1146 | 			{ | 
| 1147 | 				sparse_vector_reduction<typename std::remove_reference<decltype(vct_add_data)>::type, | 
| 1148 | 								    decltype(vct_add_data_reord_map), | 
| 1149 | 								    decltype(vct_add_index_unique),vv_reduce,block_functor,impl2> | 
| 1150 | 			        svr( | 
| 1151 | 			                vct_add_data_unique, | 
| 1152 | 			                vct_add_data_reord, | 
| 1153 | 			                vct_add_data, | 
| 1154 | 			                vct_add_data_reord_map, | 
| 1155 | 			                vct_add_index_unique, | 
| 1156 | 			                blf, | 
| 1157 | 			                context); | 
| 1158 |  | 
| 1159 | 				boost::mpl::for_each_ref<boost::mpl::range_c<int,0,sizeof...(v_reduce)>>(svr); | 
| 1160 | 			} | 
| 1161 |  | 
| 1162 | 			sparse_vector_special<typename std::remove_reference<decltype(vct_add_data)>::type, | 
| 1163 | 								  decltype(vct_add_index_unique), | 
| 1164 | 								  vv_reduce> svr2(vct_add_data_unique,vct_add_data_reord,vct_add_index_unique,context); | 
| 1165 | 			boost::mpl::for_each_ref<boost::mpl::range_c<int,0,sizeof...(v_reduce)>>(svr2); | 
| 1166 |  | 
| 1167 | 			////////////////////////////////////////////////////////////////////////////////////////////////////// | 
| 1168 |  | 
| 1169 |             // Now perform the right solve_conflicts according to impl2 | 
| 1170 |             scalar_block_implementation_switch<impl2, block_functor>::template solveConflicts< | 
| 1171 |                     decltype(vct_data), | 
| 1172 |                     decltype(vct_index), | 
| 1173 |                     decltype(segments_new), | 
| 1174 |                     decltype(vct_index_dtmp), | 
| 1175 |                     Ti, | 
| 1176 |                     v_reduce ... | 
| 1177 |                     > | 
| 1178 |                     ( | 
| 1179 |                         vct_index, | 
| 1180 |                         vct_index_tmp, | 
| 1181 |                         vct_index_tmp2, | 
| 1182 |                         vct_index_tmp3, | 
| 1183 |                         vct_index_dtmp, | 
| 1184 |                         vct_add_data_reord_map, | 
| 1185 |                         segments_new, | 
| 1186 |                         vct_data, | 
| 1187 |                         vct_add_data, | 
| 1188 |                         vct_add_data_unique, | 
| 1189 |                         vct_add_data_cont, | 
| 1190 |                         itew, | 
| 1191 |                         blf, | 
| 1192 |                         context | 
| 1193 |                     ); | 
| 1194 |  | 
| 1195 |  | 
| 1196 | #else | 
| 1197 | 			std::cout << __FILE__ << ":"  << __LINE__ << " error: you are supposed to compile this file with nvcc, if you want to use it with gpu"  << std::endl; | 
| 1198 | #endif | 
| 1199 | 		} | 
| 1200 |  | 
| 1201 | 		template<typename ... v_reduce> | 
| 1202 | 		void flush_on_gpu_insert(vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index_cont_0, | 
| 1203 | 				  vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index_cont_1, | 
| 1204 | 				  vector<T,Memory,layout_base,grow_p> & vct_add_data_reord, | 
| 1205 | 				  mgpu::ofp_context_t & context) | 
| 1206 | 		{ | 
| 1207 | #ifdef __NVCC__ | 
| 1208 |  | 
| 1209 | 			// To avoid the case where you never called setGPUInsertBuffer | 
| 1210 | 			if (n_gpu_add_block_slot == 0 || vct_add_index.size() == 0) | 
| 1211 | 			{ | 
| 1212 | 				return; | 
| 1213 | 			} | 
| 1214 |  | 
| 1215 | 			size_t n_ele = make_continuos(vct_nadd_index,vct_add_index,vct_add_index_cont_0,vct_add_index_cont_1, | 
| 1216 | 										  vct_add_data,vct_add_data_cont,context); | 
| 1217 |  | 
| 1218 |             // At this point we can check whether we have not inserted anything actually, | 
| 1219 |             // in this case, return without further ado... | 
| 1220 | 			if (vct_add_index_cont_0.size() == 0) | 
| 1221 |             {return;} | 
| 1222 |  | 
| 1223 | 			reorder_indexes(vct_add_index_cont_0,vct_add_index_cont_1,vct_add_data_reord,vct_add_data,context); | 
| 1224 |  | 
| 1225 | 			merge_indexes<v_reduce ... >(vct_add_index_cont_0,vct_add_index_unique, | 
| 1226 | 										 vct_index_tmp,vct_index_tmp2, | 
| 1227 | 										 context); | 
| 1228 |  | 
| 1229 | 			merge_datas<v_reduce ... >(vct_add_data_reord,vct_add_index_unique,vct_add_data,vct_add_index_cont_1,context); | 
| 1230 |  | 
| 1231 | #else | 
| 1232 | 			std::cout << __FILE__ << ":"  << __LINE__ << " error: you are supposed to compile this file with nvcc, if you want to use it with gpu"  << std::endl; | 
| 1233 | #endif | 
| 1234 | 		} | 
| 1235 |  | 
| 1236 |  | 
| 1237 | 		void flush_on_gpu_remove( | 
| 1238 | 				  mgpu::ofp_context_t & context) | 
| 1239 | 		{ | 
| 1240 | #ifdef __NVCC__ | 
| 1241 |  | 
| 1242 | 			// Add 0 to the last element to vct_nadd_index | 
| 1243 | 			vct_nrem_index.resize(vct_nrem_index.size()+1); | 
| 1244 | 			vct_nrem_index.template get<0>(vct_nrem_index.size()-1) = 0; | 
| 1245 | 			vct_nrem_index.template hostToDevice<0>(vct_nrem_index.size()-1,vct_nrem_index.size()-1); | 
| 1246 |  | 
| 1247 | 			// Merge the list of inserted points for each block | 
| 1248 | 			vct_index_tmp4.resize(vct_nrem_index.size()); | 
| 1249 |  | 
| 1250 | 			openfpm::scan((Ti *)vct_nrem_index.template getDeviceBuffer<0>(), vct_nrem_index.size(), (Ti *)vct_index_tmp4.template getDeviceBuffer<0>() , context); | 
| 1251 |  | 
| 1252 | 			vct_index_tmp4.template deviceToHost<0>(vct_index_tmp4.size()-1,vct_index_tmp4.size()-1); | 
| 1253 | 			size_t n_ele = vct_index_tmp4.template get<0>(vct_index_tmp4.size()-1); | 
| 1254 |  | 
| 1255 | 			// we reuse vct_nadd_index | 
| 1256 | 			vct_add_index_cont_0.resize(n_ele); | 
| 1257 | 			vct_add_index_cont_1.resize(n_ele); | 
| 1258 |  | 
| 1259 | 			ite_gpu<1> itew; | 
| 1260 | 			itew.wthr.x = vct_nrem_index.size()-1; | 
| 1261 | 			itew.wthr.y = 1; | 
| 1262 | 			itew.wthr.z = 1; | 
| 1263 | 			itew.thr.x = 128; | 
| 1264 | 			itew.thr.y = 1; | 
| 1265 | 			itew.thr.z = 1; | 
| 1266 |  | 
| 1267 | 			CUDA_LAUNCH(construct_remove_list,itew,vct_rem_index.toKernel(), | 
| 1268 | 										vct_nrem_index.toKernel(), | 
| 1269 | 										vct_index_tmp4.toKernel(), | 
| 1270 | 										vct_add_index_cont_0.toKernel(), | 
| 1271 | 										vct_add_index_cont_1.toKernel(), | 
| 1272 | 										n_gpu_rem_block_slot); | 
| 1273 |  | 
| 1274 | 			// now we sort | 
| 1275 | 			openfpm::sort((Ti *)vct_add_index_cont_0.template getDeviceBuffer<0>(),(Ti *)vct_add_index_cont_1.template getDeviceBuffer<0>(), | 
| 1276 | 					vct_add_index_cont_0.size(), mgpu::template less_t<Ti>(), context); | 
| 1277 |  | 
| 1278 | 			auto ite = vct_add_index_cont_0.getGPUIterator(); | 
| 1279 |  | 
| 1280 | 			mem.allocate(sizeof(int)); | 
| 1281 | 			mem.fill(0); | 
| 1282 | 			vct_add_index_unique.resize(vct_add_index_cont_0.size()+1); | 
| 1283 |  | 
| 1284 | 			ite = vct_add_index_cont_0.getGPUIterator(); | 
| 1285 |  | 
| 1286 | 			// produce unique index list | 
| 1287 | 			// Find the buffer bases | 
| 1288 | 			CUDA_LAUNCH((find_buffer_offsets_zero<0,decltype(vct_add_index_cont_0.toKernel()),decltype(vct_add_index_unique.toKernel())>), | 
| 1289 | 					    ite, | 
| 1290 | 					    vct_add_index_cont_0.toKernel(),(int *)mem.getDevicePointer(),vct_add_index_unique.toKernel()); | 
| 1291 |  | 
| 1292 | 			mem.deviceToHost(); | 
| 1293 | 			int n_ele_unique = *(int *)mem.getPointer(); | 
| 1294 |  | 
| 1295 | 			vct_add_index_unique.resize(n_ele_unique); | 
| 1296 |  | 
| 1297 | 			openfpm::sort((Ti *)vct_add_index_unique.template getDeviceBuffer<1>(),(Ti *)vct_add_index_unique.template getDeviceBuffer<0>(), | 
| 1298 | 							vct_add_index_unique.size(),mgpu::template less_t<Ti>(),context); | 
| 1299 |  | 
| 1300 | 			// Then we merge the two list vct_index and vct_add_index_unique | 
| 1301 |  | 
| 1302 | 			// index to get merge index | 
| 1303 | 			vct_m_index.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1304 |  | 
| 1305 | 			ite = vct_m_index.getGPUIterator(); | 
| 1306 | 			CUDA_LAUNCH((set_indexes<0>),ite,vct_m_index.toKernel(),0); | 
| 1307 |  | 
| 1308 | 			ite = vct_add_index_unique.getGPUIterator(); | 
| 1309 | 			CUDA_LAUNCH((set_indexes<1>),ite,vct_add_index_unique.toKernel(),vct_index.size()); | 
| 1310 |  | 
| 1311 | 			// after merge we solve the last conflicts, running across the vector again and spitting 1 when there is something to merge | 
| 1312 | 			// we reorder the data array also | 
| 1313 |  | 
| 1314 | 			vct_index_tmp.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1315 | 			vct_index_tmp2.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1316 |  | 
| 1317 | 			itew.wthr.x = vct_index_tmp.size() / 128 + (vct_index_tmp.size() % 128 != 0); | 
| 1318 | 			itew.wthr.y = 1; | 
| 1319 | 			itew.wthr.z = 1; | 
| 1320 | 			itew.thr.x = 128; | 
| 1321 | 			itew.thr.y = 1; | 
| 1322 | 			itew.thr.z = 1; | 
| 1323 |  | 
| 1324 | 			vct_index_dtmp.resize(itew.wthr.x); | 
| 1325 |  | 
| 1326 | 			// we merge with vct_index with vct_add_index_unique in vct_index_tmp, vct_intex_tmp2 contain the merging index | 
| 1327 | 			// | 
| 1328 | 			mgpu::merge((Ti *)vct_index.template getDeviceBuffer<0>(),(Ti *)vct_m_index.template getDeviceBuffer<0>(),vct_index.size(), | 
| 1329 | 						(Ti *)vct_add_index_unique.template getDeviceBuffer<0>(),(Ti *)vct_add_index_unique.template getDeviceBuffer<1>(),vct_add_index_unique.size(), | 
| 1330 | 						(Ti *)vct_index_tmp.template getDeviceBuffer<0>(),(Ti *)vct_index_tmp2.template getDeviceBuffer<0>(),mgpu::less_t<Ti>(),context); | 
| 1331 |  | 
| 1332 | 			vct_index_tmp3.resize(128*itew.wthr.x); | 
| 1333 |  | 
| 1334 | 			CUDA_LAUNCH((solve_conflicts_remove<decltype(vct_index_tmp.toKernel()),decltype(vct_index_dtmp.toKernel()),128>), | 
| 1335 | 										itew, | 
| 1336 | 										vct_index_tmp.toKernel(), | 
| 1337 | 										 vct_index_tmp2.toKernel(), | 
| 1338 | 										 vct_index_tmp3.toKernel(), | 
| 1339 | 										 vct_m_index.toKernel(), | 
| 1340 | 										  vct_index_dtmp.toKernel(), | 
| 1341 | 										  vct_index.size()); | 
| 1342 |  | 
| 1343 | 			// we scan tmp3 | 
| 1344 | 			openfpm::scan((Ti*)vct_index_dtmp.template getDeviceBuffer<0>(),vct_index_dtmp.size(),(Ti *)vct_index_dtmp.template getDeviceBuffer<1>(),context); | 
| 1345 |  | 
| 1346 | 			// get the size to resize vct_index and vct_data | 
| 1347 | 			vct_index_dtmp.template deviceToHost<0,1>(vct_index_dtmp.size()-1,vct_index_dtmp.size()-1); | 
| 1348 | 			int size = vct_index_dtmp.template get<1>(vct_index_dtmp.size()-1) + vct_index_dtmp.template get<0>(vct_index_dtmp.size()-1); | 
| 1349 |  | 
| 1350 | 			vct_add_data_cont.resize(size); | 
| 1351 | 			vct_index.resize(size); | 
| 1352 |  | 
| 1353 | 			CUDA_LAUNCH(realign_remove,itew,vct_index_tmp3.toKernel(),vct_m_index.toKernel(),vct_data.toKernel(), | 
| 1354 | 								  vct_index.toKernel(),vct_add_data_cont.toKernel(), | 
| 1355 | 								  vct_index_dtmp.toKernel()); | 
| 1356 |  | 
| 1357 | 			vct_data.swap(vct_add_data_cont); | 
| 1358 |  | 
| 1359 | #else | 
| 1360 | 			std::cout << __FILE__ << ":"  << __LINE__ << " error: you are suppose to compile this file with nvcc, if you want to use it with gpu"  << std::endl; | 
| 1361 | #endif | 
| 1362 | 		} | 
| 1363 |  | 
| 1364 | 		void resetBck() | 
| 1365 | 		{ | 
| 1366 | 			// re-add background | 
| 1367 | 			vct_data.resize(vct_data.size()+1); | 
| 1368 | 			vct_data.get(vct_data.size()-1) = bck; | 
| 1369 |  | 
| 1370 | 			htoD<decltype(vct_data)> trf(vct_data,vct_data.size()-1); | 
| 1371 | 			boost::mpl::for_each_ref< boost::mpl::range_c<int,0,T::max_prop> >(trf); | 
| 1372 | 		} | 
| 1373 |  | 
| 1374 | 		template<typename ... v_reduce> | 
| 1375 | 		void flush_on_gpu(vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index_cont_0, | 
| 1376 | 						  vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index_cont_1, | 
| 1377 | 						  vector<T,Memory,layout_base,grow_p> & vct_add_data_reord, | 
| 1378 | 						  mgpu::ofp_context_t & context) | 
| 1379 | 		{ | 
| 1380 | 			flush_on_gpu_insert<v_reduce ... >(vct_add_index_cont_0,vct_add_index_cont_1,vct_add_data_reord,context); | 
| 1381 | 		} | 
| 1382 |  | 
| 1383 | 		template<typename ... v_reduce> | 
| 1384 | 		void flush_on_cpu() | 
| 1385 | 		{ | 
| 1386 | 			if (vct_add_index.size() == 0) | 
| 1387 | 			{return;} | 
| 1388 |  | 
| 1389 | 			// First copy the added index to reorder | 
| 1390 | 			reorder_add_index_cpu.resize(vct_add_index.size()); | 
| 1391 | 			vct_add_data_cont.resize(vct_add_index.size()); | 
| 1392 |  | 
| 1393 | 			for (size_t i = 0 ; i < reorder_add_index_cpu.size() ; i++) | 
| 1394 | 			{ | 
| 1395 | 				reorder_add_index_cpu.get(i).id = vct_add_index.template get<0>(i); | 
| 1396 | 				reorder_add_index_cpu.get(i).id2 = i; | 
| 1397 | 			} | 
| 1398 |  | 
| 1399 | 			reorder_add_index_cpu.sort(); | 
| 1400 |  | 
| 1401 | 			// Copy the data | 
| 1402 | 			for (size_t i = 0 ; i < reorder_add_index_cpu.size() ; i++) | 
| 1403 | 			{ | 
| 1404 | 				vct_add_data_cont.get(i) = vct_add_data.get(reorder_add_index_cpu.get(i).id2); | 
| 1405 | 			} | 
| 1406 |  | 
| 1407 | 			typedef boost::mpl::vector<v_reduce...> vv_reduce; | 
| 1408 |  | 
| 1409 | 			sparse_vector_reduction_cpu<decltype(vct_add_data), | 
| 1410 | 										decltype(vct_add_index_unique), | 
| 1411 | 										decltype(reorder_add_index_cpu), | 
| 1412 | 										vv_reduce, | 
| 1413 | 										impl2> | 
| 1414 | 			        svr(vct_add_data_unique, | 
| 1415 | 			        	vct_add_data_cont, | 
| 1416 | 			        	vct_add_index_unique, | 
| 1417 | 			        	reorder_add_index_cpu); | 
| 1418 |  | 
| 1419 | 			boost::mpl::for_each_ref<boost::mpl::range_c<int,0,sizeof...(v_reduce)>>(svr); | 
| 1420 |  | 
| 1421 | 			// merge the the data | 
| 1422 |  | 
| 1423 | 			vector<T,Memory,layout_base,grow_p,impl> vct_data_tmp; | 
| 1424 | 			vector<aggregate<Ti>,Memory,layout_base,grow_p> vct_index_tmp; | 
| 1425 |  | 
| 1426 | 			vct_data_tmp.resize(vct_data.size() + vct_add_data_unique.size()); | 
| 1427 | 			vct_index_tmp.resize(vct_index.size() + vct_add_index_unique.size()); | 
| 1428 |  | 
| 1429 | 			Ti di = 0; | 
| 1430 | 			Ti ai = 0; | 
| 1431 | 			size_t i = 0; | 
| 1432 |  | 
| 1433 | 			for ( ; i < vct_data_tmp.size() ; i++) | 
| 1434 | 			{ | 
| 1435 | 				Ti id_a = (ai < vct_add_index_unique.size())?vct_add_index_unique.template get<0>(ai):std::numeric_limits<Ti>::max(); | 
| 1436 | 				Ti id_d = (di < vct_index.size())?vct_index.template get<0>(di):std::numeric_limits<Ti>::max(); | 
| 1437 |  | 
| 1438 | 				if (  id_a <= id_d ) | 
| 1439 | 				{ | 
| 1440 | 					vct_index_tmp.template get<0>(i) = id_a; | 
| 1441 |  | 
| 1442 | 					if (id_a == id_d) | 
| 1443 | 					{ | 
| 1444 | 						auto dst = vct_data_tmp.get(i); | 
| 1445 | 						auto src = vct_add_data_unique.get(ai); | 
| 1446 |  | 
| 1447 | 						sparse_vector_reduction_solve_conflict_assign_cpu<decltype(vct_data_tmp.get(i)), | 
| 1448 | 																		  decltype(vct_add_data.get(ai)), | 
| 1449 | 																		  vv_reduce> | 
| 1450 | 						sva(src,dst); | 
| 1451 |  | 
| 1452 | 						boost::mpl::for_each_ref<boost::mpl::range_c<int,0,sizeof...(v_reduce)>>(sva); | 
| 1453 | 						ai++; | 
| 1454 |  | 
| 1455 | 						dst = vct_data_tmp.get(i); | 
| 1456 | 						src = vct_data.get(di); | 
| 1457 |  | 
| 1458 | 						sparse_vector_reduction_solve_conflict_reduce_cpu<decltype(vct_data_tmp.get(i)), | 
| 1459 | 								  	  	  	  	  	  	  	  	  	  	  decltype(vct_data.get(di)), | 
| 1460 | 								  	  	  	  	  	  	  	  	  	  	  vv_reduce, | 
| 1461 | 								  	  	  	  	  	  	  	  	  	  	  impl2> | 
| 1462 | 						svr(src,dst); | 
| 1463 | 						boost::mpl::for_each_ref<boost::mpl::range_c<int,0,sizeof...(v_reduce)>>(svr); | 
| 1464 |  | 
| 1465 | 						di++; | 
| 1466 |  | 
| 1467 | 						vct_data_tmp.resize(vct_data_tmp.size()-1); | 
| 1468 | 						vct_index_tmp.resize(vct_index_tmp.size()-1); | 
| 1469 | 					} | 
| 1470 | 					else | 
| 1471 | 					{ | 
| 1472 | 						vct_index_tmp.template get<0>(i) = vct_add_index_unique.template get<0>(ai); | 
| 1473 | 						vct_data_tmp.get(i) = vct_add_data_unique.get(ai); | 
| 1474 | 						ai++; | 
| 1475 | 					} | 
| 1476 | 				} | 
| 1477 | 				else | 
| 1478 | 				{ | 
| 1479 | 					vct_index_tmp.template get<0>(i) = vct_index.template get<0>(di); | 
| 1480 | 					vct_data_tmp.get(i) = vct_data.get(di); | 
| 1481 | 					di++; | 
| 1482 | 				} | 
| 1483 | 			} | 
| 1484 |  | 
| 1485 | 			vct_index.swap(vct_index_tmp); | 
| 1486 | 			vct_data.swap(vct_data_tmp); | 
| 1487 |  | 
| 1488 | 			vct_add_data.clear(); | 
| 1489 | 			vct_add_index.clear(); | 
| 1490 | 			vct_add_index_unique.clear(); | 
| 1491 | 			vct_add_data_unique.clear(); | 
| 1492 | 		} | 
| 1493 |  | 
| 1494 | 	public: | 
| 1495 |  | 
| 1496 | 		vector_sparse() | 
| 1497 | 		:max_ele(0) | 
| 1498 | 		{ | 
| 1499 | 			vct_data.resize(1); | 
| 1500 | 		} | 
| 1501 |  | 
| 1502 |         /*! \brief Get the indices buffer | 
| 1503 |         * | 
| 1504 |         * \return the reference to the indices buffer | 
| 1505 |         */ | 
| 1506 |         auto getIndexBuffer() -> decltype(vct_index)& | 
| 1507 |         { | 
| 1508 |             return vct_index; | 
| 1509 |         } | 
| 1510 |  | 
| 1511 |         /*! \brief Get the data buffer | 
| 1512 |          * | 
| 1513 |          * \return the reference to the data buffer | 
| 1514 |          */ | 
| 1515 |         auto getDataBuffer() -> decltype(vct_data)& | 
| 1516 |         { | 
| 1517 |             return vct_data; | 
| 1518 |         } | 
| 1519 |  | 
| 1520 |         /*! \brief Get the indices buffer | 
| 1521 |         * | 
| 1522 |         * \return the reference to the indices buffer | 
| 1523 |         */ | 
| 1524 |         auto getIndexBuffer() const -> const decltype(vct_index)& | 
| 1525 |         { | 
| 1526 |             return vct_index; | 
| 1527 |         } | 
| 1528 |  | 
| 1529 |         /*! \brief Get the data buffer | 
| 1530 |          * | 
| 1531 |          * \return the reference to the data buffer | 
| 1532 |          */ | 
| 1533 |         auto getDataBuffer() const -> const decltype(vct_data)& | 
| 1534 |         { | 
| 1535 |             return vct_data; | 
| 1536 |         } | 
| 1537 |  | 
| 1538 | 		/*! \brief Get the sparse index | 
| 1539 | 		 * | 
| 1540 | 		 * Get the sparse index of the element id | 
| 1541 | 		 * | 
| 1542 | 		 * \note use get_index and get to retrieve the value index associated to the sparse index | 
| 1543 | 		 * | 
| 1544 | 		 * \param id Element to get | 
| 1545 | 		 * | 
| 1546 | 		 * \return the element value requested | 
| 1547 | 		 * | 
| 1548 | 		 */ | 
| 1549 | 		inline openfpm::sparse_index<Ti> get_sparse(Ti id) const | 
| 1550 | 		{ | 
| 1551 | 			Ti di; | 
| 1552 | 			this->_branchfree_search<false>(id,di); | 
| 1553 | 			openfpm::sparse_index<Ti> sid; | 
| 1554 | 			sid.id = di; | 
| 1555 |  | 
| 1556 | 			return sid; | 
| 1557 | 		} | 
| 1558 |  | 
| 1559 | 		/*! \brief Get an element of the vector | 
| 1560 | 		 * | 
| 1561 | 		 * Get an element of the vector | 
| 1562 | 		 * | 
| 1563 | 		 * \tparam p Property to get | 
| 1564 | 		 * \param id Element to get | 
| 1565 | 		 * | 
| 1566 | 		 * \return the element value requested | 
| 1567 | 		 * | 
| 1568 | 		 */ | 
| 1569 | 		template <unsigned int p> | 
| 1570 | 		inline auto get(Ti id) const -> decltype(vct_data.template get<p>(id)) | 
| 1571 | 		{ | 
| 1572 | 			Ti di; | 
| 1573 | 			this->_branchfree_search<false>(id,di); | 
| 1574 | 			return vct_data.template get<p>(di); | 
| 1575 | 		} | 
| 1576 |  | 
| 1577 | 		/*! \brief Get an element of the vector | 
| 1578 | 		 * | 
| 1579 | 		 * Get an element of the vector | 
| 1580 | 		 * | 
| 1581 | 		 * \tparam p Property to get | 
| 1582 | 		 * \param id Element to get | 
| 1583 | 		 * | 
| 1584 | 		 * \return the element value requested | 
| 1585 | 		 * | 
| 1586 | 		 */ | 
| 1587 | 		inline auto get(Ti id) const -> decltype(vct_data.get(id)) | 
| 1588 | 		{ | 
| 1589 | 			Ti di; | 
| 1590 | 			this->_branchfree_search<false>(id,di); | 
| 1591 | 			return vct_data.get(di); | 
| 1592 | 		} | 
| 1593 |  | 
| 1594 | 		/*! \brief resize to n elements | 
| 1595 | 		 * | 
| 1596 | 		 * \param n elements | 
| 1597 | 		 * | 
| 1598 | 		 */ | 
| 1599 | 		void resize(size_t n) | 
| 1600 | 		{ | 
| 1601 | 			max_ele = n; | 
| 1602 | 		} | 
| 1603 |  | 
| 1604 | 		/*! \brief | 
| 1605 | 		 * | 
| 1606 | 		 * \warning After using this function to move out the vector of the indexes, this object become useless and | 
| 1607 | 		 *          must be destroyed | 
| 1608 | 		 * | 
| 1609 | 		 * \param iv | 
| 1610 | 		 * | 
| 1611 | 		 */ | 
| 1612 | 		void swapIndexVector(vector<aggregate<Ti>,Memory,layout_base,grow_p> & iv) | 
| 1613 | 		{ | 
| 1614 | 			vct_index.swap(iv); | 
| 1615 | 		} | 
| 1616 |  | 
| 1617 | 		/*! \brief Set the background to bck (which value get must return when the value is not find) | 
| 1618 | 		 * | 
| 1619 | 		 * \param bck | 
| 1620 | 		 * | 
| 1621 | 		 */ | 
| 1622 | 		template <unsigned int p> | 
| 1623 | 		auto getBackground() const -> decltype(vct_data.template get<p>(vct_data.size()-1)) | 
| 1624 | 		{ | 
| 1625 | 			return vct_data.template get<p>(vct_data.size()-1); | 
| 1626 | 		} | 
| 1627 |  | 
| 1628 | 		/*! \brief Set the background to bck (which value get must return when the value is not find) | 
| 1629 | 		 * | 
| 1630 | 		 * \param bck | 
| 1631 | 		 * | 
| 1632 | 		 */ | 
| 1633 | 		auto getBackground() const -> decltype(vct_data.get(vct_data.size()-1)) | 
| 1634 | 		{ | 
| 1635 | 			return vct_data.get(vct_data.size()-1); | 
| 1636 | 		} | 
| 1637 |  | 
| 1638 | 	    template<unsigned int p> | 
| 1639 | 	    void setBackground(const typename boost::mpl::at<typename T::type, boost::mpl::int_<p>>::type & bck_) | 
| 1640 | 	    { | 
| 1641 | 	    	meta_copy_d<typename boost::mpl::at<typename T::type, boost::mpl::int_<p>>::type, | 
| 1642 | 	    				typename std::remove_reference<decltype(vct_data.template get<p>(vct_data.size()-1))>::type> | 
| 1643 | 	    				::meta_copy_d_(bck_,vct_data.template get<p>(vct_data.size()-1)); | 
| 1644 |  | 
| 1645 | 	    	vct_data.template hostToDevice<p>(vct_data.size()-1,vct_data.size()-1); | 
| 1646 |  | 
| 1647 | 	    	meta_copy<typename boost::mpl::at<typename T::type, boost::mpl::int_<p>>::type> | 
| 1648 | 	    				::meta_copy_(bck_,bck.template get<p>()); | 
| 1649 | 	    } | 
| 1650 |  | 
| 1651 | 		/*! \brief It insert an element in the sparse vector | 
| 1652 | 		 * | 
| 1653 | 		 * \tparam p property id | 
| 1654 | 		 * | 
| 1655 | 		 * \param ele element id | 
| 1656 | 		 * | 
| 1657 | 		 */ | 
| 1658 | 		template <unsigned int p> | 
| 1659 | 		auto insert(Ti ele) -> decltype(vct_data.template get<p>(0)) | 
| 1660 | 		{ | 
| 1661 | 			vct_add_index.add(); | 
| 1662 | 			vct_add_index.template get<0>(vct_add_index.size()-1) = ele; | 
| 1663 | 			vct_add_data.add(); | 
| 1664 | 			return vct_add_data.template get<p>(vct_add_data.size()-1); | 
| 1665 | 		} | 
| 1666 |  | 
| 1667 | 		/*! \brief It insert an element in the sparse vector | 
| 1668 | 		 * | 
| 1669 | 		 * \tparam p property id | 
| 1670 | 		 * | 
| 1671 | 		 * \param ele element id | 
| 1672 | 		 * | 
| 1673 | 		 */ | 
| 1674 | 		template <unsigned int p> | 
| 1675 | 		auto insertFlush(Ti ele) -> decltype(vct_data.template get<p>(0)) | 
| 1676 | 		{ | 
| 1677 | 			size_t di; | 
| 1678 |  | 
| 1679 | 			// first we have to search if the block exist | 
| 1680 | 			Ti v = _branchfree_search_nobck(ele,di); | 
| 1681 |  | 
| 1682 | 			if (v == ele) | 
| 1683 | 			{ | 
| 1684 | 				// block exist | 
| 1685 | 				return vct_data.template get<p>(di); | 
| 1686 | 			} | 
| 1687 |  | 
| 1688 | 			// It does not exist, we create it di contain the index where we have to create the new block | 
| 1689 | 			vct_index.insert(di); | 
| 1690 | 			vct_data.isert(di); | 
| 1691 |  | 
| 1692 | 			return vct_data.template get<p>(di); | 
| 1693 | 		} | 
| 1694 |  | 
| 1695 | 		/*! \brief It insert an element in the sparse vector | 
| 1696 | 		 * | 
| 1697 | 		 * \param ele element id | 
| 1698 | 		 * | 
| 1699 | 		 */ | 
| 1700 | 		auto insertFlush(Ti ele) -> decltype(vct_data.get(0)) | 
| 1701 | 		{ | 
| 1702 | 			Ti di; | 
| 1703 |  | 
| 1704 | 			// first we have to search if the block exist | 
| 1705 | 			Ti v = _branchfree_search_nobck<true>(ele,di); | 
| 1706 |  | 
| 1707 | 			if (v == ele) | 
| 1708 | 			{ | 
| 1709 | 				// block exist | 
| 1710 | 				return vct_data.get(di); | 
| 1711 | 			} | 
| 1712 |  | 
| 1713 | 			// It does not exist, we create it di contain the index where we have to create the new block | 
| 1714 | 			vct_index.insert(di); | 
| 1715 | 			vct_data.insert(di); | 
| 1716 |  | 
| 1717 | 			vct_index.template get<0>(di) = ele; | 
| 1718 |  | 
| 1719 | 			return vct_data.get(di); | 
| 1720 | 		} | 
| 1721 |  | 
| 1722 | 		/*! \brief It insert an element in the sparse vector | 
| 1723 | 		 * | 
| 1724 | 		 * \param ele element id | 
| 1725 | 		 * | 
| 1726 | 		 */ | 
| 1727 | 		auto insert(Ti ele) -> decltype(vct_data.get(0)) | 
| 1728 | 		{ | 
| 1729 | 			vct_add_index.add(); | 
| 1730 | 			vct_add_index.template get<0>(vct_add_index.size()-1) = ele; | 
| 1731 | 			vct_add_data.add(); | 
| 1732 | 			return vct_add_data.get(vct_add_data.size()-1); | 
| 1733 | 		} | 
| 1734 |  | 
| 1735 | 		/*! \brief merge the added element to the main data array but save the insert buffer in v | 
| 1736 | 		 * | 
| 1737 | 		 * \param v insert buffer | 
| 1738 | 		 * | 
| 1739 | 		 * \param opt options | 
| 1740 | 		 * | 
| 1741 | 		 */ | 
| 1742 | 		template<typename ... v_reduce> | 
| 1743 | 		void flush_v(vector<aggregate<Ti>,Memory,layout_base,grow_p> & vct_add_index_cont_0, | 
| 1744 | 				     mgpu::ofp_context_t & context, | 
| 1745 | 				     flush_type opt = FLUSH_ON_HOST, | 
| 1746 | 				     int i = 0) | 
| 1747 | 		{ | 
| 1748 | 			// Eliminate background | 
| 1749 | 			vct_data.resize(vct_index.size()); | 
| 1750 |  | 
| 1751 | 			if (opt & flush_type::FLUSH_ON_DEVICE) | 
| 1752 | 			{this->flush_on_gpu<v_reduce ... >(vct_add_index_cont_0,vct_add_index_cont_1,vct_add_data_reord,context,i);} | 
| 1753 | 			else | 
| 1754 | 			{this->flush_on_cpu<v_reduce ... >();} | 
| 1755 |  | 
| 1756 | 			resetBck(); | 
| 1757 | 		} | 
| 1758 |  | 
| 1759 | 		/*! \brief merge the added element to the main data array but save the insert buffer in v | 
| 1760 | 		 * | 
| 1761 | 		 * \param v insert buffer | 
| 1762 | 		 * | 
| 1763 | 		 * \param opt options | 
| 1764 | 		 * | 
| 1765 | 		 */ | 
| 1766 | 		template<typename ... v_reduce> | 
| 1767 | 		void flush_vd(vector<T,Memory,layout_base,grow_p> & vct_add_data_reord, | 
| 1768 | 				     mgpu::ofp_context_t & context, | 
| 1769 | 				     flush_type opt = FLUSH_ON_HOST) | 
| 1770 | 		{ | 
| 1771 | 			// Eliminate background | 
| 1772 | 			vct_data.resize(vct_index.size()); | 
| 1773 |  | 
| 1774 | 			if (opt & flush_type::FLUSH_ON_DEVICE) | 
| 1775 | 			{this->flush_on_gpu<v_reduce ... >(vct_add_index_cont_0,vct_add_index_cont_1,vct_add_data_reord,context);} | 
| 1776 | 			else | 
| 1777 | 			{this->flush_on_cpu<v_reduce ... >();} | 
| 1778 |  | 
| 1779 | 			resetBck(); | 
| 1780 | 		} | 
| 1781 |  | 
| 1782 | 		/*! \brief merge the added element to the main data array | 
| 1783 | 		 * | 
| 1784 | 		 * \param opt options | 
| 1785 | 		 * | 
| 1786 | 		 */ | 
| 1787 | 		template<typename ... v_reduce> | 
| 1788 | 		void flush(mgpu::ofp_context_t & context, flush_type opt = FLUSH_ON_HOST) | 
| 1789 | 		{ | 
| 1790 | 			// Eliminate background | 
| 1791 | 			vct_data.resize(vct_index.size()); | 
| 1792 |  | 
| 1793 | 			if (opt & flush_type::FLUSH_ON_DEVICE) | 
| 1794 | 			{this->flush_on_gpu<v_reduce ... >(vct_add_index_cont_0,vct_add_index_cont_1,vct_add_data_reord,context);} | 
| 1795 | 			else | 
| 1796 | 			{this->flush_on_cpu<v_reduce ... >();} | 
| 1797 |  | 
| 1798 | 			resetBck(); | 
| 1799 | 		} | 
| 1800 |  | 
| 1801 | 		/*! \brief merge the added element to the main data array | 
| 1802 | 		 * | 
| 1803 | 		 * \param opt options | 
| 1804 | 		 * | 
| 1805 | 		 */ | 
| 1806 | 		void flush_remove(mgpu::ofp_context_t & context, flush_type opt = FLUSH_ON_HOST) | 
| 1807 | 		{ | 
| 1808 | 			vct_data.resize(vct_data.size()-1); | 
| 1809 |  | 
| 1810 | 			if (opt & flush_type::FLUSH_ON_DEVICE) | 
| 1811 | 			{this->flush_on_gpu_remove(context);} | 
| 1812 | 			else | 
| 1813 | 			{ | 
| 1814 | 				std::cerr << __FILE__ << ":"  << __LINE__ << " error, flush_remove on CPU has not implemented yet" ; | 
| 1815 | 			} | 
| 1816 |  | 
| 1817 | 			resetBck(); | 
| 1818 | 		} | 
| 1819 |  | 
| 1820 | 		/*! \brief Return how many element you have in this map | 
| 1821 | 		 * | 
| 1822 | 		 * \return the number of elements | 
| 1823 | 		 */ | 
| 1824 | 		size_t size() | 
| 1825 | 		{ | 
| 1826 | 			return vct_index.size(); | 
| 1827 | 		} | 
| 1828 |  | 
| 1829 | 		/*! \brief Return the sorted vector of the indexes | 
| 1830 | 		 * | 
| 1831 | 		 * \return return the sorted vector of the indexes | 
| 1832 | 		 */ | 
| 1833 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> & | 
| 1834 | 		private_get_vct_index() | 
| 1835 | 		{ | 
| 1836 | 			return vct_index; | 
| 1837 | 		} | 
| 1838 |  | 
| 1839 | 		/*! \brief Transfer from device to host | 
| 1840 | 		 * | 
| 1841 | 		 * \tparam set of parameters to transfer to host | 
| 1842 | 		 * | 
| 1843 | 		 */ | 
| 1844 | 		template<unsigned int ... prp> | 
| 1845 | 		void deviceToHost() | 
| 1846 | 		{ | 
| 1847 | 			vct_index.template deviceToHost<0>(); | 
| 1848 | 			vct_data.template deviceToHost<prp...>(); | 
| 1849 | 		} | 
| 1850 |  | 
| 1851 |         /*! \brief Transfer from host to device | 
| 1852 |          * | 
| 1853 |          * \tparam set of parameters to transfer to device | 
| 1854 |          * | 
| 1855 |          */ | 
| 1856 |         template<unsigned int ... prp> | 
| 1857 |         void hostToDevice() | 
| 1858 |         { | 
| 1859 |             vct_index.template hostToDevice<0>(); | 
| 1860 |             vct_data.template hostToDevice<prp...>(); | 
| 1861 |         } | 
| 1862 |  | 
| 1863 | 		/*! \brief toKernel function transform this structure into one that can be used on GPU | 
| 1864 | 		 * | 
| 1865 | 		 * \return structure that can be used on GPU | 
| 1866 | 		 * | 
| 1867 | 		 */ | 
| 1868 | 		vector_sparse_gpu_ker<T,Ti,layout_base> toKernel() | 
| 1869 | 		{ | 
| 1870 | 			vector_sparse_gpu_ker<T,Ti,layout_base> mvsck(vct_index.toKernel(),vct_data.toKernel(), | 
| 1871 | 														  vct_add_index.toKernel(), | 
| 1872 | 														  vct_rem_index.toKernel(),vct_add_data.toKernel(), | 
| 1873 | 														  vct_nadd_index.toKernel(), | 
| 1874 | 														  vct_nrem_index.toKernel(), | 
| 1875 | 														  n_gpu_add_block_slot, | 
| 1876 | 														  n_gpu_rem_block_slot); | 
| 1877 |  | 
| 1878 | 			return mvsck; | 
| 1879 | 		} | 
| 1880 |  | 
| 1881 | 		/*! \brief set the gpu insert buffer for every block | 
| 1882 | 		 * | 
| 1883 | 		 * \param nblock number of blocks | 
| 1884 | 		 * \param nslot number of slots free for each block | 
| 1885 | 		 * | 
| 1886 | 		 */ | 
| 1887 | 		void setGPUInsertBuffer(int nblock, int nslot) | 
| 1888 | 		{ | 
| 1889 | 			vct_add_index.resize(nblock*nslot); | 
| 1890 | 			vct_nadd_index.resize(nblock); | 
| 1891 | 			vct_add_data.resize(nblock*nslot); | 
| 1892 | 			n_gpu_add_block_slot = nslot; | 
| 1893 | 			vct_nadd_index.template fill<0>(0); | 
| 1894 | 		} | 
| 1895 |  | 
| 1896 | 		/*! \brief In case we manually set the added index buffer and the add data buffer we have to call this | 
| 1897 | 		 *         function before flush | 
| 1898 | 		 * | 
| 1899 | 		 * | 
| 1900 | 		 */ | 
| 1901 | 		void preFlush() | 
| 1902 | 		{ | 
| 1903 | #ifdef __NVCC__ | 
| 1904 | 			vct_nadd_index.resize(vct_add_index.size()); | 
| 1905 |  | 
| 1906 | 			if (vct_nadd_index.size() != 0) | 
| 1907 | 			{ | 
| 1908 | 				auto ite = vct_nadd_index.getGPUIterator(); | 
| 1909 | 				CUDA_LAUNCH((set_one_insert_buffer),ite,vct_nadd_index.toKernel()); | 
| 1910 | 			} | 
| 1911 | 			n_gpu_add_block_slot = 1; | 
| 1912 | #endif | 
| 1913 | 		} | 
| 1914 |  | 
| 1915 |         /*! \brief Get the GPU insert buffer | 
| 1916 |          * | 
| 1917 |          * \return the reference to the GPU insert buffer | 
| 1918 |          */ | 
| 1919 |         auto getGPUInsertBuffer() -> decltype(vct_add_data)& | 
| 1920 |         { | 
| 1921 |             return vct_add_data; | 
| 1922 |         } | 
| 1923 |  | 
| 1924 | 		/*! \brief set the gpu remove buffer for every block | 
| 1925 | 		 * | 
| 1926 | 		 * \param nblock number of blocks | 
| 1927 | 		 * \param nslot number of slots free for each block | 
| 1928 | 		 * | 
| 1929 | 		 */ | 
| 1930 | 		void setGPURemoveBuffer(int nblock, int nslot) | 
| 1931 | 		{ | 
| 1932 | 			vct_rem_index.resize(nblock*nslot); | 
| 1933 | 			vct_nrem_index.resize(nblock); | 
| 1934 | 			n_gpu_rem_block_slot = nslot; | 
| 1935 | 			vct_nrem_index.template fill<0>(0); | 
| 1936 | 		} | 
| 1937 |  | 
| 1938 | #ifdef CUDA_GPU | 
| 1939 |  | 
| 1940 | 		/*! \brief Get iterator over the stored elements | 
| 1941 | 		 * | 
| 1942 | 		 * \return an iterator | 
| 1943 | 		 * | 
| 1944 | 		 */ | 
| 1945 | 		auto getGPUIterator() -> decltype(vct_index.getGPUIterator()) | 
| 1946 | 		{ | 
| 1947 | 			return vct_index.getGPUIterator(); | 
| 1948 | 		} | 
| 1949 |  | 
| 1950 | #endif | 
| 1951 |  | 
| 1952 | 		/*! \brief Clear all from all the elements | 
| 1953 | 		 * | 
| 1954 | 		 * | 
| 1955 | 		 */ | 
| 1956 | 		void clear() | 
| 1957 | 		{ | 
| 1958 | 			vct_data.clear(); | 
| 1959 | 			vct_index.clear(); | 
| 1960 | 			vct_add_index.clear(); | 
| 1961 | 			vct_add_data.clear(); | 
| 1962 |  | 
| 1963 | 			// re-add background | 
| 1964 | 			vct_data.resize(vct_data.size()+1); | 
| 1965 | 			vct_data.get(vct_data.size()-1) = bck; | 
| 1966 |  | 
| 1967 | 			htoD<decltype(vct_data)> trf(vct_data,vct_data.size()-1); | 
| 1968 | 			boost::mpl::for_each_ref< boost::mpl::range_c<int,0,T::max_prop> >(trf); | 
| 1969 |  | 
| 1970 | 			max_ele = 0; | 
| 1971 | 			n_gpu_add_block_slot = 0; | 
| 1972 | 			n_gpu_rem_block_slot = 0; | 
| 1973 | 		} | 
| 1974 |  | 
| 1975 | 		void swap(vector_sparse<T,Ti,Memory,layout,layout_base,grow_p,impl> & sp) | 
| 1976 | 		{ | 
| 1977 | 			vct_data.swap(sp.vct_data); | 
| 1978 | 			vct_index.swap(sp.vct_index); | 
| 1979 | 			vct_add_index.swap(sp.vct_add_index); | 
| 1980 | 			vct_add_data.swap(sp.vct_add_data); | 
| 1981 |  | 
| 1982 | 			size_t max_ele_ = sp.max_ele; | 
| 1983 | 			sp.max_ele = max_ele; | 
| 1984 | 			this->max_ele = max_ele_; | 
| 1985 | 		} | 
| 1986 |  | 
| 1987 | 		vector<T,Memory,layout_base,grow_p> & private_get_vct_add_data() | 
| 1988 | 		{ | 
| 1989 | 			return vct_add_data; | 
| 1990 | 		} | 
| 1991 |  | 
| 1992 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> & private_get_vct_add_index() | 
| 1993 | 		{ | 
| 1994 | 			return vct_add_index; | 
| 1995 | 		} | 
| 1996 |  | 
| 1997 | 		const vector<aggregate<Ti>,Memory,layout_base,grow_p> & private_get_vct_add_index() const | 
| 1998 | 		{ | 
| 1999 | 			return vct_add_index; | 
| 2000 | 		} | 
| 2001 |  | 
| 2002 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> & private_get_vct_nadd_index() | 
| 2003 | 		{ | 
| 2004 | 			return vct_nadd_index; | 
| 2005 | 		} | 
| 2006 |  | 
| 2007 | 		const vector<aggregate<Ti>,Memory,layout_base,grow_p> & private_get_vct_nadd_index() const | 
| 2008 | 		{ | 
| 2009 | 			return vct_nadd_index; | 
| 2010 | 		} | 
| 2011 |  | 
| 2012 | 		auto getSegmentToOutMap() -> decltype(blf.get_outputMap()) | 
| 2013 | 		{ | 
| 2014 | 			return blf.get_outputMap(); | 
| 2015 | 		} | 
| 2016 |  | 
| 2017 | 		auto getSegmentToOutMap() const -> decltype(blf.get_outputMap()) | 
| 2018 | 		{ | 
| 2019 | 			return blf.get_outputMap(); | 
| 2020 | 		} | 
| 2021 |  | 
| 2022 | 		/*! \brief Eliminate many internal temporary buffer you can use this between flushes if you get some out of memory | 
| 2023 | 		 * | 
| 2024 | 		 * | 
| 2025 | 		 */ | 
| 2026 | 		void removeUnusedBuffers() | 
| 2027 | 		{ | 
| 2028 | 			vct_add_data.resize(0); | 
| 2029 | 			vct_add_data.shrink_to_fit(); | 
| 2030 |  | 
| 2031 | 			vct_add_data.resize(0); | 
| 2032 | 			vct_add_data.shrink_to_fit(); | 
| 2033 |  | 
| 2034 | 			vct_add_data_reord.resize(0); | 
| 2035 | 			vct_add_data_reord.shrink_to_fit(); | 
| 2036 |  | 
| 2037 | 			vct_add_data_cont.resize(0); | 
| 2038 | 			vct_add_data_cont.shrink_to_fit(); | 
| 2039 |  | 
| 2040 | 			vct_add_data_unique.resize(0); | 
| 2041 | 			vct_add_data_unique.shrink_to_fit(); | 
| 2042 | 		} | 
| 2043 |  | 
| 2044 | 		/* \brief Return the offsets of the segments for the merge indexes | 
| 2045 | 		 * | 
| 2046 | 		 * | 
| 2047 | 		 */ | 
| 2048 | 		vector<aggregate<Ti,Ti>,Memory,layout_base,grow_p> & getSegmentToMergeIndexMap() | 
| 2049 | 		{ | 
| 2050 | 			return vct_add_index_unique; | 
| 2051 | 		} | 
| 2052 |  | 
| 2053 | 		vector<aggregate<Ti,Ti>,Memory,layout_base,grow_p> & getSegmentToMergeIndexMap() const | 
| 2054 | 		{ | 
| 2055 | 			return vct_add_index_unique; | 
| 2056 | 		} | 
| 2057 |  | 
| 2058 | 		/*! \brief Return the mapping vector | 
| 2059 | 		 * | 
| 2060 | 		 * When we add new elements this vector contain the merged old elements and new elements position | 
| 2061 | 		 * | 
| 2062 | 		 * For example the old vector contain | 
| 2063 | 		 * | 
| 2064 | 		 * Old: 5 10 35 50 66 79 (6 elements) | 
| 2065 | 		 * New: 7 44 7 9 44      (5 elements)  (in order are 7 7 9 44 44) | 
| 2066 | 		 * | 
| 2067 | 		 * The merged indexes are (when reordered) | 
| 2068 | 		 * | 
| 2069 | 		 * 5 7 7 9 10 35 44 44 50 66 79 | 
| 2070 | 		 * | 
| 2071 | 		 * The returned map contain 5 elements indicating the position of the reordered elements: | 
| 2072 | 		 * | 
| 2073 | 		 *  0  2  3   1   4 | 
| 2074 | 		 * (7)(7)(9)(44)(44) | 
| 2075 | 		 */ | 
| 2076 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> & getMappingVector() | 
| 2077 | 		{ | 
| 2078 | 			return vct_add_index_cont_1; | 
| 2079 | 		} | 
| 2080 |  | 
| 2081 | 		/*! \brief Return the merge mapping vector | 
| 2082 | 		 * | 
| 2083 | 		 * When we add new elements this vector contain the merged old elements and new elements position | 
| 2084 | 		 * | 
| 2085 | 		 * For example the old vector contain | 
| 2086 | 		 * | 
| 2087 | 		 * Old: 5 10 35 50 66 79 (6 elements) | 
| 2088 | 		 * New: 7 44 7 9 44      (5 elements)  (in order are 7 7 9 44 44) | 
| 2089 | 		 * | 
| 2090 | 		 * The merged indexes are (when reordered) | 
| 2091 | 		 * | 
| 2092 | 		 * 5 7 7 9 10 35 44 44 50 66 79 | 
| 2093 | 		 * | 
| 2094 | 		 * The returned map contain 5 elements indicating the position of the reordered elements: | 
| 2095 | 		 * | 
| 2096 | 		 *  0  6  7  8   1   2   9  10   3   4   5 | 
| 2097 | 		 * (5)(7)(7)(9)(10)(35)(44)(44)(50)(66)(79) | 
| 2098 | 		 */ | 
| 2099 | 		vector<aggregate<Ti>,Memory,layout_base,grow_p> & getMergeIndexMapVector() | 
| 2100 | 		{ | 
| 2101 | 			return vct_index_tmp2; | 
| 2102 | 		} | 
| 2103 | 	}; | 
| 2104 |  | 
| 2105 |  | 
| 2106 | 	template<typename T, unsigned int blockSwitch = VECTOR_SPARSE_STANDARD, typename block_functor = stub_block_functor, typename indexT = int> | 
| 2107 | 	using vector_sparse_gpu = openfpm::vector_sparse< | 
| 2108 | 	        T, | 
| 2109 | 	        indexT, | 
| 2110 | 	        CudaMemory, | 
| 2111 | 	        typename memory_traits_inte<T>::type, | 
| 2112 | 	        memory_traits_inte, | 
| 2113 |             grow_policy_double, | 
| 2114 |             vect_isel<T>::value, | 
| 2115 |             blockSwitch, | 
| 2116 |             block_functor | 
| 2117 |             >; | 
| 2118 |  | 
| 2119 | 	template<typename T, typename block_functor = stub_block_functor, typename indexT = long int> | 
| 2120 | 	using vector_sparse_gpu_block = openfpm::vector_sparse< | 
| 2121 | 	        T, | 
| 2122 | 	        indexT, | 
| 2123 | 	        CudaMemory, | 
| 2124 | 	        typename memory_traits_inte<T>::type, | 
| 2125 | 	        memory_traits_inte, | 
| 2126 |             grow_policy_double, | 
| 2127 |             vect_isel<T>::value, | 
| 2128 |             VECTOR_SPARSE_BLOCK, | 
| 2129 |             block_functor | 
| 2130 |             >; | 
| 2131 | } | 
| 2132 |  | 
| 2133 |  | 
| 2134 |  | 
| 2135 | #endif /* MAP_VECTOR_SPARSE_HPP_ */ | 
| 2136 |  |