1/**
2 * MIT License
3 *
4 * Copyright (c) 2017 Tessil
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef TSL_HOPSCOTCH_MAP_H
25#define TSL_HOPSCOTCH_MAP_H
26
27
28#include <algorithm>
29#include <cstddef>
30#include <functional>
31#include <initializer_list>
32#include <list>
33#include <memory>
34#include <type_traits>
35#include <utility>
36#include "hopscotch_hash.h"
37
38
39namespace tsl {
40
41/**
42 * Implementation of a hash map using the hopscotch hashing algorithm.
43 *
44 * The Key and the value T must be either nothrow move-constructible, copy-constuctible or both.
45 *
46 * The size of the neighborhood (NeighborhoodSize) must be > 0 and <= 62 if StoreHash is false.
47 * When StoreHash is true, 32-bits of the hash will be stored alongside the neighborhood limiting
48 * the NeighborhoodSize to <= 30. There is no memory usage difference between
49 * 'NeighborhoodSize 62; StoreHash false' and 'NeighborhoodSize 30; StoreHash true'.
50 *
51 * Storing the hash may improve performance on insert during the rehash process if the hash takes time
52 * to compute. It may also improve read performance if the KeyEqual function takes time (or incurs a cache-miss).
53 * If used with simple Hash and KeyEqual it may slow things down.
54 *
55 * StoreHash can only be set if the GrowthPolicy is set to tsl::power_of_two_growth_policy.
56 *
57 * GrowthPolicy defines how the map grows and consequently how a hash value is mapped to a bucket.
58 * By default the map uses tsl::power_of_two_growth_policy. This policy keeps the number of buckets
59 * to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
60 * You may define your own growth policy, check tsl::power_of_two_growth_policy for the interface.
61 *
62 * If the destructors of Key or T throw an exception, behaviour of the class is undefined.
63 *
64 * Iterators invalidation:
65 * - clear, operator=, reserve, rehash: always invalidate the iterators.
66 * - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators
67 * if a displacement is needed to resolve a collision (which mean that most of the time,
68 * insert will invalidate the iterators). Or if there is a rehash.
69 * - erase: iterator on the erased element is the only one which become invalid.
70 */
71template<class Key,
72 class T,
73 class Hash = std::hash<Key>,
74 class KeyEqual = std::equal_to<Key>,
75 class Allocator = std::allocator<std::pair<Key, T>>,
76 unsigned int NeighborhoodSize = 62,
77 bool StoreHash = false,
78 class GrowthPolicy = tsl::power_of_two_growth_policy>
79class hopscotch_map {
80private:
81 template<typename U>
82 using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
83
84 class KeySelect {
85 public:
86 using key_type = Key;
87
88 const key_type& operator()(const std::pair<Key, T>& key_value) const {
89 return key_value.first;
90 }
91
92 key_type& operator()(std::pair<Key, T>& key_value) {
93 return key_value.first;
94 }
95 };
96
97 class ValueSelect {
98 public:
99 using value_type = T;
100
101 const value_type& operator()(const std::pair<Key, T>& key_value) const {
102 return key_value.second;
103 }
104
105 value_type& operator()(std::pair<Key, T>& key_value) {
106 return key_value.second;
107 }
108 };
109
110
111 using overflow_container_type = std::list<std::pair<Key, T>, Allocator>;
112 using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<Key, T>, KeySelect, ValueSelect,
113 Hash, KeyEqual,
114 Allocator, NeighborhoodSize,
115 StoreHash, GrowthPolicy,
116 overflow_container_type>;
117
118public:
119 using key_type = typename ht::key_type;
120 using mapped_type = T;
121 using value_type = typename ht::value_type;
122 using size_type = typename ht::size_type;
123 using difference_type = typename ht::difference_type;
124 using hasher = typename ht::hasher;
125 using key_equal = typename ht::key_equal;
126 using allocator_type = typename ht::allocator_type;
127 using reference = typename ht::reference;
128 using const_reference = typename ht::const_reference;
129 using pointer = typename ht::pointer;
130 using const_pointer = typename ht::const_pointer;
131 using iterator = typename ht::iterator;
132 using const_iterator = typename ht::const_iterator;
133
134
135
136 /*
137 * Constructors
138 */
139 hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
140 }
141
142 explicit hopscotch_map(size_type bucket_count,
143 const Hash& hash = Hash(),
144 const KeyEqual& equal = KeyEqual(),
145 const Allocator& alloc = Allocator()) :
146 m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
147 {
148 }
149
150 hopscotch_map(size_type bucket_count,
151 const Allocator& alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc)
152 {
153 }
154
155 hopscotch_map(size_type bucket_count,
156 const Hash& hash,
157 const Allocator& alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc)
158 {
159 }
160
161 explicit hopscotch_map(const Allocator& alloc) : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
162 }
163
164 template<class InputIt>
165 hopscotch_map(InputIt first, InputIt last,
166 size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
167 const Hash& hash = Hash(),
168 const KeyEqual& equal = KeyEqual(),
169 const Allocator& alloc = Allocator()) : hopscotch_map(bucket_count, hash, equal, alloc)
170 {
171 insert(first, last);
172 }
173
174 template<class InputIt>
175 hopscotch_map(InputIt first, InputIt last,
176 size_type bucket_count,
177 const Allocator& alloc) : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
178 {
179 }
180
181 template<class InputIt>
182 hopscotch_map(InputIt first, InputIt last,
183 size_type bucket_count,
184 const Hash& hash,
185 const Allocator& alloc) : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc)
186 {
187 }
188
189 hopscotch_map(std::initializer_list<value_type> init,
190 size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
191 const Hash& hash = Hash(),
192 const KeyEqual& equal = KeyEqual(),
193 const Allocator& alloc = Allocator()) :
194 hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
195 {
196 }
197
198 hopscotch_map(std::initializer_list<value_type> init,
199 size_type bucket_count,
200 const Allocator& alloc) :
201 hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
202 {
203 }
204
205 hopscotch_map(std::initializer_list<value_type> init,
206 size_type bucket_count,
207 const Hash& hash,
208 const Allocator& alloc) :
209 hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
210 {
211 }
212
213
214 hopscotch_map& operator=(std::initializer_list<value_type> ilist) {
215 m_ht.clear();
216
217 m_ht.reserve(ilist.size());
218 m_ht.insert(ilist.begin(), ilist.end());
219
220 return *this;
221 }
222
223 allocator_type get_allocator() const { return m_ht.get_allocator(); }
224
225
226 /*
227 * Iterators
228 */
229 iterator begin() noexcept { return m_ht.begin(); }
230 const_iterator begin() const noexcept { return m_ht.begin(); }
231 const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
232
233 iterator end() noexcept { return m_ht.end(); }
234 const_iterator end() const noexcept { return m_ht.end(); }
235 const_iterator cend() const noexcept { return m_ht.cend(); }
236
237
238 /*
239 * Capacity
240 */
241 bool empty() const noexcept { return m_ht.empty(); }
242 size_type size() const noexcept { return m_ht.size(); }
243 size_type max_size() const noexcept { return m_ht.max_size(); }
244
245 /*
246 * Modifiers
247 */
248 void clear() noexcept { m_ht.clear(); }
249
250
251
252
253 std::pair<iterator, bool> insert(const value_type& value) {
254 return m_ht.insert(value);
255 }
256
257 template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
258 std::pair<iterator, bool> insert(P&& value) {
259 return m_ht.insert(std::forward<P>(value));
260 }
261
262 std::pair<iterator, bool> insert(value_type&& value) {
263 return m_ht.insert(std::move(value));
264 }
265
266
267 iterator insert(const_iterator hint, const value_type& value) {
268 return m_ht.insert(hint, value);
269 }
270
271 template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
272 iterator insert(const_iterator hint, P&& value) {
273 return m_ht.insert(hint, std::forward<P>(value));
274 }
275
276 iterator insert(const_iterator hint, value_type&& value) {
277 return m_ht.insert(hint, std::move(value));
278 }
279
280
281 template<class InputIt>
282 void insert(InputIt first, InputIt last) {
283 m_ht.insert(first, last);
284 }
285
286 void insert(std::initializer_list<value_type> ilist) {
287 m_ht.insert(ilist.begin(), ilist.end());
288 }
289
290
291
292
293 template<class M>
294 std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
295 return m_ht.insert_or_assign(k, std::forward<M>(obj));
296 }
297
298 template<class M>
299 std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
300 return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
301 }
302
303 template<class M>
304 iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
305 return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
306 }
307
308 template<class M>
309 iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
310 return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
311 }
312
313
314
315
316 /**
317 * Due to the way elements are stored, emplace will need to move or copy the key-value once.
318 * The method is equivalent to insert(value_type(std::forward<Args>(args)...));
319 *
320 * Mainly here for compatibility with the std::unordered_map interface.
321 */
322 template<class... Args>
323 std::pair<iterator, bool> emplace(Args&&... args) {
324 return m_ht.emplace(std::forward<Args>(args)...);
325 }
326
327
328
329
330 /**
331 * Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
332 * The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
333 *
334 * Mainly here for compatibility with the std::unordered_map interface.
335 */
336 template<class... Args>
337 iterator emplace_hint(const_iterator hint, Args&&... args) {
338 return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
339 }
340
341
342
343
344 template<class... Args>
345 std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
346 return m_ht.try_emplace(k, std::forward<Args>(args)...);
347 }
348
349 template<class... Args>
350 std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
351 return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
352 }
353
354 template<class... Args>
355 iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
356 return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
357 }
358
359 template<class... Args>
360 iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
361 return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
362 }
363
364
365
366
367 iterator erase(iterator pos) { return m_ht.erase(pos); }
368 iterator erase(const_iterator pos) { return m_ht.erase(pos); }
369 iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
370 size_type erase(const key_type& key) { return m_ht.erase(key); }
371
372 /**
373 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
374 * as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
375 */
376 size_type erase(const key_type& key, std::size_t precalculated_hash) {
377 return m_ht.erase(key, precalculated_hash);
378 }
379
380 /**
381 * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
382 * If so, K must be hashable and comparable to Key.
383 */
384 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
385 size_type erase(const K& key) { return m_ht.erase(key); }
386
387 /**
388 * @copydoc erase(const K& key)
389 *
390 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
391 * as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
392 */
393 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
394 size_type erase(const K& key, std::size_t precalculated_hash) {
395 return m_ht.erase(key, precalculated_hash);
396 }
397
398
399
400
401 void swap(hopscotch_map& other) { other.m_ht.swap(m_ht); }
402
403 /*
404 * Lookup
405 */
406 T& at(const Key& key) { return m_ht.at(key); }
407
408 /**
409 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
410 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
411 */
412 T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
413
414
415 const T& at(const Key& key) const { return m_ht.at(key); }
416
417 /**
418 * @copydoc at(const Key& key, std::size_t precalculated_hash)
419 */
420 const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
421
422
423 /**
424 * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
425 * If so, K must be hashable and comparable to Key.
426 */
427 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
428 T& at(const K& key) { return m_ht.at(key); }
429
430 /**
431 * @copydoc at(const K& key)
432 *
433 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
434 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
435 */
436 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
437 T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
438
439
440 /**
441 * @copydoc at(const K& key)
442 */
443 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
444 const T& at(const K& key) const { return m_ht.at(key); }
445
446 /**
447 * @copydoc at(const K& key, std::size_t precalculated_hash)
448 */
449 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
450 const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
451
452
453
454
455 T& operator[](const Key& key) { return m_ht[key]; }
456 T& operator[](Key&& key) { return m_ht[std::move(key)]; }
457
458
459
460
461 size_type count(const Key& key) const { return m_ht.count(key); }
462
463 /**
464 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
465 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
466 */
467 size_type count(const Key& key, std::size_t precalculated_hash) const {
468 return m_ht.count(key, precalculated_hash);
469 }
470
471 /**
472 * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
473 * If so, K must be hashable and comparable to Key.
474 */
475 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
476 size_type count(const K& key) const { return m_ht.count(key); }
477
478 /**
479 * @copydoc count(const K& key) const
480 *
481 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
482 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
483 */
484 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
485 size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
486
487
488
489
490 iterator find(const Key& key) { return m_ht.find(key); }
491
492 /**
493 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
494 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
495 */
496 iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
497
498 const_iterator find(const Key& key) const { return m_ht.find(key); }
499
500 /**
501 * @copydoc find(const Key& key, std::size_t precalculated_hash)
502 */
503 const_iterator find(const Key& key, std::size_t precalculated_hash) const {
504 return m_ht.find(key, precalculated_hash);
505 }
506
507 /**
508 * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
509 * If so, K must be hashable and comparable to Key.
510 */
511 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
512 iterator find(const K& key) { return m_ht.find(key); }
513
514 /**
515 * @copydoc find(const K& key)
516 *
517 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
518 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
519 */
520 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
521 iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
522
523 /**
524 * @copydoc find(const K& key)
525 */
526 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
527 const_iterator find(const K& key) const { return m_ht.find(key); }
528
529 /**
530 * @copydoc find(const K& key)
531 *
532 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
533 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
534 */
535 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
536 const_iterator find(const K& key, std::size_t precalculated_hash) const {
537 return m_ht.find(key, precalculated_hash);
538 }
539
540
541
542
543 std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
544
545 /**
546 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
547 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
548 */
549 std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
550 return m_ht.equal_range(key, precalculated_hash);
551 }
552
553 std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
554
555 /**
556 * @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
557 */
558 std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
559 return m_ht.equal_range(key, precalculated_hash);
560 }
561
562 /**
563 * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
564 * If so, K must be hashable and comparable to Key.
565 */
566 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
567 std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
568
569
570 /**
571 * @copydoc equal_range(const K& key)
572 *
573 * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
574 * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
575 */
576 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
577 std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
578 return m_ht.equal_range(key, precalculated_hash);
579 }
580
581 /**
582 * @copydoc equal_range(const K& key)
583 */
584 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
585 std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
586
587 /**
588 * @copydoc equal_range(const K& key, std::size_t precalculated_hash)
589 */
590 template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
591 std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
592 return m_ht.equal_range(key, precalculated_hash);
593 }
594
595
596
597
598 /*
599 * Bucket interface
600 */
601 size_type bucket_count() const { return m_ht.bucket_count(); }
602 size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
603
604
605 /*
606 * Hash policy
607 */
608 float load_factor() const { return m_ht.load_factor(); }
609 float max_load_factor() const { return m_ht.max_load_factor(); }
610 void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
611
612 void rehash(size_type count) { m_ht.rehash(count); }
613 void reserve(size_type count) { m_ht.reserve(count); }
614
615
616 /*
617 * Observers
618 */
619 hasher hash_function() const { return m_ht.hash_function(); }
620 key_equal key_eq() const { return m_ht.key_eq(); }
621
622 /*
623 * Other
624 */
625
626 /**
627 * Convert a const_iterator to an iterator.
628 */
629 iterator mutable_iterator(const_iterator pos) {
630 return m_ht.mutable_iterator(pos);
631 }
632
633 size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
634
635 friend bool operator==(const hopscotch_map& lhs, const hopscotch_map& rhs) {
636 if(lhs.size() != rhs.size()) {
637 return false;
638 }
639
640 for(const auto& element_lhs : lhs) {
641 const auto it_element_rhs = rhs.find(element_lhs.first);
642 if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
643 return false;
644 }
645 }
646
647 return true;
648 }
649
650 friend bool operator!=(const hopscotch_map& lhs, const hopscotch_map& rhs) {
651 return !operator==(lhs, rhs);
652 }
653
654 friend void swap(hopscotch_map& lhs, hopscotch_map& rhs) {
655 lhs.swap(rhs);
656 }
657
658
659
660private:
661 ht m_ht;
662};
663
664} // end namespace tsl
665
666#endif
667