| 1 | /* |
| 2 | * memory_c.hpp |
| 3 | * |
| 4 | * Created on: Aug 17, 2014 |
| 5 | * Author: Pietro Incardona |
| 6 | */ |
| 7 | |
| 8 | #include <boost/multi_array.hpp> |
| 9 | #include <boost/fusion/mpl.hpp> |
| 10 | #include <boost/fusion/include/mpl.hpp> |
| 11 | #include <boost/mpl/vector.hpp> |
| 12 | #include <array> |
| 13 | #include <boost/mpl/pop_front.hpp> |
| 14 | #include <boost/mpl/push_front.hpp> |
| 15 | |
| 16 | //#include "util/boost/boost_multi_array_openfpm.hpp" |
| 17 | #include "util/multi_array_openfpm/multi_array_ref_openfpm.hpp" |
| 18 | #include "util/ct_array.hpp" |
| 19 | #include "memory_array.hpp" |
| 20 | #include "memory/memory.hpp" |
| 21 | |
| 22 | #ifndef MEMORY_C_HPP_ |
| 23 | #define MEMORY_C_HPP_ |
| 24 | |
| 25 | #define MEMORY_C_STANDARD 1 |
| 26 | #define MEMORY_C_REDUCED 2 |
| 27 | |
| 28 | template<typename T, unsigned int impl = MEMORY_C_STANDARD, typename D = memory> |
| 29 | class memory_c |
| 30 | { |
| 31 | |
| 32 | }; |
| 33 | |
| 34 | /*! |
| 35 | * \brief This class is a container for the memory interface like HeapMemory CudaMemory |
| 36 | * |
| 37 | * It store the object used to allocate memory and a representation of this memory as an array of objects T |
| 38 | * |
| 39 | * It is mainly used by memory_conf to create the correct memory layout |
| 40 | * |
| 41 | * \see memory_traits_inte memory_traits_lin |
| 42 | * |
| 43 | */ |
| 44 | template<typename T, typename D> |
| 45 | class memory_c<T,MEMORY_C_STANDARD,D> |
| 46 | { |
| 47 | public: |
| 48 | |
| 49 | //! define T |
| 50 | typedef memory_c<T> type; |
| 51 | |
| 52 | //! define a reference to T |
| 53 | typedef T& reference; |
| 54 | |
| 55 | //! define T |
| 56 | typedef T vtype; |
| 57 | |
| 58 | //! object that allocate memory like HeapMemory or CudaMemory |
| 59 | memory * mem; |
| 60 | |
| 61 | //! object that represent the memory as an array of objects T |
| 62 | memory_array<T> mem_r; |
| 63 | |
| 64 | /*! \brief This function set the object that allocate memory |
| 65 | * |
| 66 | * \param mem the memory object |
| 67 | * |
| 68 | */ |
| 69 | void setMemory(memory & mem) |
| 70 | { |
| 71 | if (this->mem != NULL) |
| 72 | { |
| 73 | this->mem->decRef(); |
| 74 | |
| 75 | if (this->mem->ref() == 0 && &mem != this->mem) |
| 76 | delete(this->mem); |
| 77 | } |
| 78 | // this->mem->decRef(); |
| 79 | mem.incRef(); |
| 80 | this->mem = &mem; |
| 81 | } |
| 82 | |
| 83 | /*! \brief This function bind the memory_c to this memory_c as reference |
| 84 | * |
| 85 | * Bind ad reference it mean this this object does not create new memory but use the one from ref |
| 86 | * as a reference. |
| 87 | * |
| 88 | */ |
| 89 | bool bind_ref(const memory_c<T,MEMORY_C_STANDARD,D> & ref) |
| 90 | { |
| 91 | mem = ref.mem; |
| 92 | mem->incRef(); |
| 93 | |
| 94 | //! we create the representation for the memory buffer |
| 95 | mem_r = ref.mem_r; |
| 96 | |
| 97 | return true; |
| 98 | } |
| 99 | |
| 100 | /*! \brief This function get the object that allocate memory |
| 101 | * |
| 102 | * \return memory object to allocate memory |
| 103 | * |
| 104 | */ |
| 105 | |
| 106 | memory& getMemory() |
| 107 | { |
| 108 | return *this->mem; |
| 109 | } |
| 110 | |
| 111 | /*! \brief Switch the pointer to device pointer |
| 112 | * |
| 113 | */ |
| 114 | void switchToDevicePtr() |
| 115 | { |
| 116 | mem_r.set_pointer(mem->getDevicePointer()); |
| 117 | } |
| 118 | |
| 119 | /*! \brief This function get the object that allocate memory |
| 120 | * |
| 121 | * \return memory object to allocate memory |
| 122 | * |
| 123 | */ |
| 124 | |
| 125 | const memory& getMemory() const |
| 126 | { |
| 127 | return *this->mem; |
| 128 | } |
| 129 | |
| 130 | /*! \brief This function allocate memory |
| 131 | * |
| 132 | */ |
| 133 | bool allocate(const size_t sz, bool skip_initialization = false) |
| 134 | { |
| 135 | memory * mem = this->mem; |
| 136 | |
| 137 | //! We create a chunk of memory |
| 138 | mem->resize( sz*sizeof(T) ); |
| 139 | |
| 140 | //! we create the representation for this buffer |
| 141 | mem_r.initialize(mem->getPointer(),sz,mem->isInitialized() | skip_initialization); |
| 142 | |
| 143 | return true; |
| 144 | } |
| 145 | |
| 146 | //! constructor |
| 147 | memory_c():mem(NULL){} |
| 148 | |
| 149 | //! destructor |
| 150 | ~memory_c() |
| 151 | { |
| 152 | // deinitialixe mem_r |
| 153 | mem_r.deinit(); |
| 154 | if (mem != NULL) |
| 155 | { |
| 156 | mem->decRef(); |
| 157 | |
| 158 | if (mem->ref() == 0) |
| 159 | delete(mem); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | /*! \brief swap the memory |
| 164 | * |
| 165 | * swap the memory between objects |
| 166 | * |
| 167 | */ |
| 168 | void swap(memory_c & mem_obj) |
| 169 | { |
| 170 | // Save on temporal |
| 171 | |
| 172 | void * mem_tmp = static_cast<void*>(mem); |
| 173 | mem = mem_obj.mem; |
| 174 | mem_obj.mem = static_cast<memory*>(mem_tmp); |
| 175 | |
| 176 | mem_obj.mem_r.swap(mem_r); |
| 177 | } |
| 178 | |
| 179 | /*! \brief swap the memory |
| 180 | * |
| 181 | * swap the memory between objects |
| 182 | * |
| 183 | */ |
| 184 | template<typename Mem_type> |
| 185 | __host__ void swap_nomode(memory_c & mem_obj) |
| 186 | { |
| 187 | // It would be better a dynamic_cast, unfortunately nvcc |
| 188 | // does not accept it. It seems that for some reason nvcc want to |
| 189 | // produce device code out of this method. While it is true |
| 190 | // that this method is called inside a generic __device__ __host__ |
| 191 | // function, tagging this method only __host__ does not stop |
| 192 | // nvcc from the intention to produce device code. |
| 193 | // The workaround is to use static_cast. Another workaround (to test) |
| 194 | // could be create a duplicate for_each function tagged only __host__ , |
| 195 | // but I have to intention to duplicate code |
| 196 | |
| 197 | Mem_type * mem_tmp = static_cast<Mem_type*>(mem); |
| 198 | mem_tmp->swap(*static_cast<Mem_type*>(mem_obj.mem)); |
| 199 | |
| 200 | mem_obj.mem_r.swap(mem_r); |
| 201 | } |
| 202 | |
| 203 | }; |
| 204 | |
| 205 | /*! \brief This class is a trick to indicate the compiler a specific |
| 206 | * specialization pattern |
| 207 | * |
| 208 | * In particular it say that a multidimensional array has been found and |
| 209 | * need a special treatment, T is suppose to be a boost::mpl::vector of |
| 210 | * unsigned int indicating each dimension. T has to be a type of known size at |
| 211 | * compile time |
| 212 | * |
| 213 | */ |
| 214 | template<typename T> |
| 215 | class multi_array |
| 216 | { |
| 217 | typedef T type; |
| 218 | }; |
| 219 | |
| 220 | |
| 221 | /*! \brief this class multiply all the elements in a boost::mpl::vector excluding the first element |
| 222 | * |
| 223 | * \param T expecting a boost::mpl::vector |
| 224 | * |
| 225 | */ |
| 226 | template<typename T, unsigned int N> |
| 227 | struct mult |
| 228 | { |
| 229 | enum { value = mult<T,N-1>::value * boost::mpl::at<T,boost::mpl::int_<N>>::type::value }; |
| 230 | }; |
| 231 | |
| 232 | template <typename T> |
| 233 | struct mult<T,1> |
| 234 | { |
| 235 | enum { value = boost::mpl::at<T,boost::mpl::int_<1>>::type::value }; |
| 236 | }; |
| 237 | |
| 238 | template<typename size_type, unsigned int dim> |
| 239 | static inline std::array<size_type ,dim> zero_dims() |
| 240 | { |
| 241 | std::array<size_type ,dim> dimensions; |
| 242 | |
| 243 | // fill runtime, and the other dimensions |
| 244 | for (size_t i = 0 ; i < dim ; i++) |
| 245 | {dimensions[i] = 0;} |
| 246 | |
| 247 | return dimensions; |
| 248 | } |
| 249 | |
| 250 | template<unsigned int dim, typename size_type> |
| 251 | struct array_ord |
| 252 | { |
| 253 | }; |
| 254 | |
| 255 | template<typename size_type> |
| 256 | struct array_ord<4,size_type> |
| 257 | { |
| 258 | static constexpr size_type data[4] = {0,3,2,1}; |
| 259 | }; |
| 260 | |
| 261 | template<typename size_type> |
| 262 | struct array_ord<3,size_type> |
| 263 | { |
| 264 | static constexpr size_type data[3] = {0,2,1}; |
| 265 | }; |
| 266 | |
| 267 | template<typename size_type> |
| 268 | struct array_ord<2,size_type> |
| 269 | { |
| 270 | static constexpr size_type data[2] = {0,1}; |
| 271 | }; |
| 272 | |
| 273 | template<unsigned int dim> |
| 274 | struct array_asc |
| 275 | { |
| 276 | }; |
| 277 | |
| 278 | template<> |
| 279 | struct array_asc<4> |
| 280 | { |
| 281 | static constexpr bool data[4] = {true,true,true,true}; |
| 282 | }; |
| 283 | |
| 284 | template<> |
| 285 | struct array_asc<3> |
| 286 | { |
| 287 | static constexpr bool data[3] = {true,true,true}; |
| 288 | }; |
| 289 | |
| 290 | template<> |
| 291 | struct array_asc<2> |
| 292 | { |
| 293 | static constexpr bool data[2] = {true,true}; |
| 294 | }; |
| 295 | |
| 296 | |
| 297 | /*! \brief Specialization of memory_c for multi_array |
| 298 | * |
| 299 | * Specialization of memory_c for multi_array |
| 300 | * |
| 301 | * It is mainly used by memory_conf to create the correct layout |
| 302 | * |
| 303 | * \see memory_traits_inte memory_traits_lin |
| 304 | * |
| 305 | * \tparam T is suppose to be a boost::mpl::vector specifing at position 0 the type and at |
| 306 | * position 1 to N the dimensions size of the multi_array |
| 307 | * |
| 308 | * \tparam D object that allocate memory |
| 309 | * |
| 310 | */ |
| 311 | template<typename T, typename D> |
| 312 | class memory_c<multi_array<T>, MEMORY_C_STANDARD, D> |
| 313 | { |
| 314 | /*! \brief In combination with generate_array is used to produce array at compile-time |
| 315 | * |
| 316 | * In combination with generate_array is used to produce at compile-time |
| 317 | * arrays like {true,true,.........true} used in boost::multi_array to |
| 318 | * define ascending order |
| 319 | * |
| 320 | */ |
| 321 | template<size_t index,size_t N> struct ascending |
| 322 | { |
| 323 | enum { value = true }; |
| 324 | }; |
| 325 | |
| 326 | //! Remove the first element |
| 327 | typedef typename boost::mpl::push_front<typename boost::mpl::pop_front<T>::type,boost::mpl::int_<-1>>::type Tv; |
| 328 | |
| 329 | //! define boost::mpl::int_ without boost::mpl |
| 330 | template<int S> using int_ = boost::mpl::int_<S>; |
| 331 | |
| 332 | //! define the template vector size it give a number at compile time |
| 333 | typedef typename boost::mpl::size<T> size_p; |
| 334 | |
| 335 | //! Define "at" meta function without boost::mpl |
| 336 | template< typename S, unsigned int n> using at = boost::mpl::at<S,boost::mpl::int_<n> >; |
| 337 | |
| 338 | typedef typename at<T,0>::type base; |
| 339 | |
| 340 | //! define size_type |
| 341 | typedef typename openfpm::multi_array_ref_openfpm<base,size_p::value,Tv>::size_type size_type; |
| 342 | |
| 343 | public: |
| 344 | |
| 345 | /*! \brief This function set the object that allocate memory |
| 346 | * |
| 347 | * \param mem the memory object |
| 348 | * |
| 349 | */ |
| 350 | |
| 351 | void setMemory(memory & mem) |
| 352 | { |
| 353 | if (this->mem != NULL) |
| 354 | { |
| 355 | this->mem->decRef(); |
| 356 | |
| 357 | if (this->mem->ref() == 0 && &mem != this->mem) |
| 358 | delete(this->mem); |
| 359 | } |
| 360 | mem.incRef(); |
| 361 | this->mem = &mem; |
| 362 | } |
| 363 | |
| 364 | /*! \brief This function get the object that allocate memory |
| 365 | * |
| 366 | * \return memory object to allocate memory |
| 367 | * |
| 368 | */ |
| 369 | |
| 370 | memory& getMemory() |
| 371 | { |
| 372 | return *this->mem; |
| 373 | } |
| 374 | |
| 375 | /*! \brief Switch the pointer to device pointer |
| 376 | * |
| 377 | */ |
| 378 | void switchToDevicePtr() |
| 379 | { |
| 380 | mem_r.set_pointer(mem->getDevicePointer()); |
| 381 | } |
| 382 | |
| 383 | |
| 384 | /*! \brief This function bind the memory_c to this memory_c as reference |
| 385 | * |
| 386 | * Bind ad reference it mean this this object does not create new memory but use the one from ref |
| 387 | * as a reference. |
| 388 | * |
| 389 | */ |
| 390 | bool bind_ref(const memory_c<multi_array<T>, MEMORY_C_STANDARD, D> & ref) |
| 391 | { |
| 392 | mem = ref.mem; |
| 393 | mem->incRef(); |
| 394 | |
| 395 | //! we create the representation for the memory buffer |
| 396 | mem_r = ref.mem_r; |
| 397 | |
| 398 | return true; |
| 399 | } |
| 400 | |
| 401 | /*! \brief This function allocate memory and associate the representation to mem_r |
| 402 | * |
| 403 | * This function allocate memory and associate the representation of that chunk of |
| 404 | * memory to mem_r |
| 405 | * |
| 406 | */ |
| 407 | bool allocate(const size_t sz, bool skip_initialization = false) |
| 408 | { |
| 409 | memory * mem = this->mem; |
| 410 | |
| 411 | //! We create a chunk of memory |
| 412 | mem->resize( sz*mult<T,size_p::value-1>::value*sizeof(base) ); |
| 413 | |
| 414 | openfpm::multi_array_ref_openfpm<base,size_p::value,Tv> tmp(static_cast<base *>(mem->getPointer()), |
| 415 | sz, |
| 416 | openfpm::general_storage_order<size_p::value>(openfpm::ofp_storage_order())); |
| 417 | |
| 418 | //! we create the representation for the memory buffer |
| 419 | mem_r.swap(tmp); |
| 420 | |
| 421 | return true; |
| 422 | } |
| 423 | |
| 424 | //! define the type of the multi_array vector minus one of the original size |
| 425 | //! basically we remove the index 0 of the multi_array |
| 426 | typedef boost::multi_array<base,size_p::value> type; |
| 427 | |
| 428 | //! Reference to an object to allocate memory |
| 429 | D * mem; |
| 430 | |
| 431 | //! object that represent the memory as a multi-dimensional array of objects T |
| 432 | openfpm::multi_array_ref_openfpm<base,boost::mpl::size<T>::value,Tv> mem_r; |
| 433 | |
| 434 | //! constructor |
| 435 | memory_c() |
| 436 | :mem(NULL), |
| 437 | mem_r(static_cast<base *>(NULL),0,openfpm::ofp_storage_order()) |
| 438 | {} |
| 439 | |
| 440 | //! destructor |
| 441 | ~memory_c() |
| 442 | { |
| 443 | if (mem != NULL) |
| 444 | { |
| 445 | mem->decRef(); |
| 446 | if (mem->ref() == 0) |
| 447 | delete(mem); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | //! set the device memory interface, the object that allocate memory |
| 452 | void set_mem(memory & mem) |
| 453 | { |
| 454 | this->mem = &mem; |
| 455 | } |
| 456 | |
| 457 | /*! \brief swap the memory |
| 458 | * |
| 459 | * swap the memory between objects |
| 460 | * |
| 461 | */ |
| 462 | void swap(memory_c & mem_obj) |
| 463 | { |
| 464 | // Save on temporal |
| 465 | |
| 466 | void * mem_tmp = static_cast<void*>(mem); |
| 467 | mem = mem_obj.mem; |
| 468 | mem_obj.mem = static_cast<D*>(mem_tmp); |
| 469 | |
| 470 | mem_r.swap(mem_obj.mem_r); |
| 471 | } |
| 472 | |
| 473 | |
| 474 | /*! \brief swap the memory |
| 475 | * |
| 476 | * While the previous one swap the mem the swap_nomode call the swap member of the mem object |
| 477 | * |
| 478 | * \note calling the swap member require knowledge of the object type, we cannot work on abtsract objects |
| 479 | * |
| 480 | * swap the memory between objects |
| 481 | * |
| 482 | */ |
| 483 | template<typename Mem_type> |
| 484 | __host__ void swap_nomode(memory_c & mem_obj) |
| 485 | { |
| 486 | // It would be better a dynamic_cast, unfortunately nvcc |
| 487 | // does not accept it. It seems that for some reason nvcc want to |
| 488 | // produce device code out of this method. While it is true |
| 489 | // that this function is called inside a generic __device__ __host__ |
| 490 | // function, tagging this method only __host__ does not stop |
| 491 | // nvcc from the intention to produce device code. |
| 492 | // The workaround is to use static_cast. Another workaround (to test) |
| 493 | // could be create a duplicate for_each function tagged only __host__ , |
| 494 | // but I have to intention to duplicate code |
| 495 | |
| 496 | Mem_type * mem_tmp = static_cast<Mem_type*>(mem); |
| 497 | mem_tmp->swap(*static_cast<Mem_type*>(mem_obj.mem)); |
| 498 | |
| 499 | mem_obj.mem_r.swap(mem_r); |
| 500 | } |
| 501 | }; |
| 502 | |
| 503 | //! Partial specialization for scalar N=0 |
| 504 | template<typename T> |
| 505 | struct array_to_vmpl |
| 506 | { |
| 507 | }; |
| 508 | |
| 509 | |
| 510 | //! Partial specialization for N=1 |
| 511 | template<typename T,size_t N1> |
| 512 | struct array_to_vmpl<T[N1]> |
| 513 | { |
| 514 | //! the internal array primitive information represented into a boost mpl vector |
| 515 | typedef boost::mpl::vector<T,boost::mpl::int_<N1>> prim_vmpl; |
| 516 | }; |
| 517 | |
| 518 | |
| 519 | //! Partial specialization for N=2 |
| 520 | template<typename T,size_t N1,size_t N2> |
| 521 | struct array_to_vmpl<T[N1][N2]> |
| 522 | { |
| 523 | //! the internal array primitive information represented into a boost mpl vector |
| 524 | typedef boost::mpl::vector<T,boost::mpl::int_<N1>, |
| 525 | boost::mpl::int_<N2>> prim_vmpl; |
| 526 | }; |
| 527 | |
| 528 | /*! \brief OpenFPM use memory_c<multi_array<T> ..... > to implement the structure of array layout |
| 529 | * |
| 530 | * This mean that the object returned by mem_r are complex objects that represent the memory view, these view has |
| 531 | * the purpose to hook at compile time the operator[] to give the feeling of using an array |
| 532 | * |
| 533 | * This view depend from the template parameter Tv in the member mem_r, that as you can see is difficult to reconstruct |
| 534 | * In some case deduction does not work because too complex. So we have to compute this type. this function does this |
| 535 | * given a type like float[3], it produce the Tv parameter |
| 536 | * |
| 537 | * |
| 538 | */ |
| 539 | template<typename T> |
| 540 | struct to_memory_multi_array_ref_view |
| 541 | { |
| 542 | // first we convert the type into a boost vector containing the primitive, followed by array dimension |
| 543 | typedef typename array_to_vmpl<T>::prim_vmpl prim_vmpl; |
| 544 | |
| 545 | // Than we operate at compile-time the same operation memory_c<multi_array does |
| 546 | //! Remove the first element (this is the Tv parameter of ) |
| 547 | typedef typename boost::mpl::push_front<typename boost::mpl::pop_front<prim_vmpl>::type,boost::mpl::int_<-1>>::type vmpl; |
| 548 | |
| 549 | |
| 550 | }; |
| 551 | |
| 552 | #endif |
| 553 | |
| 554 | |