| 1 | /* |
| 2 | * Derivative.hpp |
| 3 | * |
| 4 | * Created on: Oct 5, 2015 |
| 5 | * Author: Pietro Incardona |
| 6 | */ |
| 7 | |
| 8 | #ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_DERIVATIVE_HPP_ |
| 9 | #define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_DERIVATIVE_HPP_ |
| 10 | |
| 11 | |
| 12 | #include "util/mathutil.hpp" |
| 13 | #include "Vector/map_vector.hpp" |
| 14 | #include "Grid/comb.hpp" |
| 15 | #include "FiniteDifference/util/common.hpp" |
| 16 | #include "util/util_num.hpp" |
| 17 | #include <unordered_map> |
| 18 | #include "FD_util_include.hpp" |
| 19 | |
| 20 | /*! \brief Derivative second order on h (spacing) |
| 21 | * |
| 22 | * \tparam d on which dimension derive |
| 23 | * \tparam Field which field derive |
| 24 | * \tparam impl which implementation |
| 25 | * |
| 26 | */ |
| 27 | template<unsigned int d, typename Field, typename Sys_eqs, unsigned int impl=CENTRAL> |
| 28 | class D |
| 29 | { |
| 30 | /*! \brief Calculate which colums of the Matrix are non zero |
| 31 | * |
| 32 | * \param pos position where the derivative is calculated |
| 33 | * \param gs Grid info |
| 34 | * \param cols non-zero colums calculated by the function |
| 35 | * \param coeff coefficent (constant in front of the derivative) |
| 36 | * |
| 37 | * ### Example |
| 38 | * |
| 39 | * \snippet FDScheme_unit_tests.hpp Usage of stencil derivative |
| 40 | * |
| 41 | */ |
| 42 | inline static void value(const grid_key_dx<Sys_eqs::dims> & pos, const grid_sm<Sys_eqs::dims,void> & gs, std::unordered_map<long int,typename Sys_eqs::stype > & cols, typename Sys_eqs::stype coeff) |
| 43 | { |
| 44 | std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " only CENTRAL, FORWARD, BACKWARD derivative are defined" ; |
| 45 | } |
| 46 | |
| 47 | /*! \brief Calculate the position where the derivative is calculated |
| 48 | * |
| 49 | * In case of non staggered case this function just return a null grid_key, in case of staggered, |
| 50 | * it calculate how the operator shift the calculation in the cell |
| 51 | * |
| 52 | * \param pos position where we are calculating the derivative |
| 53 | * \param gs Grid info |
| 54 | * \param s_pos staggered position of the properties |
| 55 | * |
| 56 | * \return where (in which cell) the derivative is calculated |
| 57 | * |
| 58 | */ |
| 59 | inline static grid_key_dx<Sys_eqs::dims> position(grid_key_dx<Sys_eqs::dims> & pos, |
| 60 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 61 | const comb<Sys_eqs::dims> (& s_pos)[Sys_eqs::nvar]) |
| 62 | { |
| 63 | std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " only CENTRAL, FORWARD, BACKWARD derivative are defined" ; |
| 64 | |
| 65 | return pos; |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | /*! \brief Second order central Derivative scheme on direction i |
| 70 | * |
| 71 | * \verbatim |
| 72 | * |
| 73 | * -1 +1 |
| 74 | * *---+---* |
| 75 | * |
| 76 | * \endverbatim |
| 77 | * |
| 78 | */ |
| 79 | template<unsigned int d, typename arg, typename Sys_eqs> |
| 80 | class D<d,arg,Sys_eqs,CENTRAL> |
| 81 | { |
| 82 | public: |
| 83 | |
| 84 | /*! \brief Calculate which colums of the Matrix are non zero |
| 85 | * |
| 86 | * \param g_map mapping grid |
| 87 | * \param kmap position where the derivative is calculated |
| 88 | * \param gs Grid info |
| 89 | * \param spacing grid spacing |
| 90 | * \param cols non-zero colums calculated by the function |
| 91 | * \param coeff coefficent (constant in front of the derivative) |
| 92 | * |
| 93 | * ### Example |
| 94 | * |
| 95 | * \snippet FDScheme_unit_tests.hpp Usage of stencil derivative |
| 96 | * |
| 97 | */ |
| 98 | inline static void value(const typename stub_or_real<Sys_eqs,Sys_eqs::dims,typename Sys_eqs::stype,typename Sys_eqs::b_grid::decomposition::extended_type>::type & g_map, |
| 99 | grid_dist_key_dx<Sys_eqs::dims> & kmap, |
| 100 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 101 | typename Sys_eqs::stype (& spacing )[Sys_eqs::dims], |
| 102 | std::unordered_map<long int,typename Sys_eqs::stype > & cols, |
| 103 | typename Sys_eqs::stype coeff) |
| 104 | { |
| 105 | // if the system is staggered the CENTRAL derivative is equivalent to a forward derivative |
| 106 | if (is_grid_staggered<Sys_eqs>::value()) |
| 107 | { |
| 108 | D<d,arg,Sys_eqs,BACKWARD>::value(g_map,kmap,gs,spacing,cols,coeff); |
| 109 | return; |
| 110 | } |
| 111 | |
| 112 | long int old_val = kmap.getKeyRef().get(d); |
| 113 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) + 1); |
| 114 | arg::value(g_map,kmap,gs,spacing,cols,coeff/spacing[d]/2.0 ); |
| 115 | kmap.getKeyRef().set_d(d,old_val); |
| 116 | |
| 117 | |
| 118 | old_val = kmap.getKeyRef().get(d); |
| 119 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) - 1); |
| 120 | arg::value(g_map,kmap,gs,spacing,cols,-coeff/spacing[d]/2.0 ); |
| 121 | kmap.getKeyRef().set_d(d,old_val); |
| 122 | } |
| 123 | |
| 124 | |
| 125 | /*! \brief Calculate the position where the derivative is calculated |
| 126 | * |
| 127 | * In case on non staggered case this function just return a null grid_key, in case of staggered, |
| 128 | * it calculate how the operator shift in the cell |
| 129 | * |
| 130 | \verbatim |
| 131 | |
| 132 | +--$--+ |
| 133 | | | |
| 134 | # * # |
| 135 | | | |
| 136 | 0--$--+ |
| 137 | |
| 138 | # = velocity(y) |
| 139 | $ = velocity(x) |
| 140 | * = pressure |
| 141 | |
| 142 | \endverbatim |
| 143 | * |
| 144 | * Consider this 2D staggered cell and a second order central derivative scheme, this lead to |
| 145 | * |
| 146 | * \f$ \frac{\partial v_y}{\partial x} \f$ is calculated on position (*), so the function return the grid_key {0,0} |
| 147 | * |
| 148 | * \f$ \frac{\partial v_y}{\partial y} \f$ is calculated on position (0), so the function return the grid_key {-1,-1} |
| 149 | * |
| 150 | * \f$ \frac{\partial v_x}{\partial x} \f$ is calculated on position (0), so the function return the grid_key {-1,-1} |
| 151 | * |
| 152 | * \f$ \frac{\partial v_x}{\partial y} \f$ is calculated on position (*), so the function return the grid_key {0,0} |
| 153 | * |
| 154 | * \param pos position where we are calculating the derivative |
| 155 | * \param gs Grid info |
| 156 | * \param s_pos staggered position of the properties |
| 157 | * |
| 158 | * \return where (in which cell grid) the derivative is calculated |
| 159 | * |
| 160 | */ |
| 161 | inline static grid_key_dx<Sys_eqs::dims> position(grid_key_dx<Sys_eqs::dims> & pos, |
| 162 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 163 | const comb<Sys_eqs::dims> (& s_pos)[Sys_eqs::nvar]) |
| 164 | { |
| 165 | auto arg_pos = arg::position(pos,gs,s_pos); |
| 166 | if (is_grid_staggered<Sys_eqs>::value()) |
| 167 | { |
| 168 | if (arg_pos.get(d) == -1) |
| 169 | { |
| 170 | arg_pos.set_d(d,0); |
| 171 | return arg_pos; |
| 172 | } |
| 173 | else |
| 174 | { |
| 175 | arg_pos.set_d(d,-1); |
| 176 | return arg_pos; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | return arg_pos; |
| 181 | } |
| 182 | }; |
| 183 | |
| 184 | |
| 185 | /*! \brief Second order one sided Derivative scheme on direction i |
| 186 | * |
| 187 | * \verbatim |
| 188 | * |
| 189 | * -1.5 2.0 -0.5 |
| 190 | * +------*------* |
| 191 | * |
| 192 | * or |
| 193 | * |
| 194 | * -0.5 2.0 -1.5 |
| 195 | * *------*------+ |
| 196 | * |
| 197 | * in the bulk |
| 198 | * |
| 199 | * -1 +1 |
| 200 | * *---+---* |
| 201 | * |
| 202 | * \endverbatim |
| 203 | * |
| 204 | */ |
| 205 | template<unsigned int d, typename arg, typename Sys_eqs> |
| 206 | class D<d,arg,Sys_eqs,CENTRAL_B_ONE_SIDE> |
| 207 | { |
| 208 | public: |
| 209 | |
| 210 | /*! \brief Calculate which colums of the Matrix are non zero |
| 211 | * |
| 212 | * \param g_map mapping grid points |
| 213 | * \param kmap position where the derivative is calculated |
| 214 | * \param gs Grid info |
| 215 | * \param spacing of the grid |
| 216 | * \param cols non-zero colums calculated by the function |
| 217 | * \param coeff coefficent (constant in front of the derivative) |
| 218 | * |
| 219 | * ### Example |
| 220 | * |
| 221 | * \snippet FDScheme_unit_tests.hpp Usage of stencil derivative |
| 222 | * |
| 223 | */ |
| 224 | static void value(const typename stub_or_real<Sys_eqs,Sys_eqs::dims,typename Sys_eqs::stype,typename Sys_eqs::b_grid::decomposition::extended_type>::type & g_map, |
| 225 | grid_dist_key_dx<Sys_eqs::dims> & kmap, |
| 226 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 227 | typename Sys_eqs::stype (& spacing )[Sys_eqs::dims], |
| 228 | std::unordered_map<long int,typename Sys_eqs::stype > & cols, |
| 229 | typename Sys_eqs::stype coeff) |
| 230 | { |
| 231 | #ifdef SE_CLASS1 |
| 232 | if (Sys_eqs::boundary[d] == PERIODIC) |
| 233 | std::cerr << __FILE__ << ":" << __LINE__ << " error, it make no sense use one sided derivation with periodic boundary, please use CENTRAL\n" ; |
| 234 | #endif |
| 235 | |
| 236 | grid_key_dx<Sys_eqs::dims> pos = g_map.getGKey(kmap); |
| 237 | |
| 238 | if (pos.get(d) == (long int)gs.size(d)-1 ) |
| 239 | { |
| 240 | arg::value(g_map,kmap,gs,spacing,cols,1.5*coeff/spacing[d]); |
| 241 | |
| 242 | long int old_val = kmap.getKeyRef().get(d); |
| 243 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) - 1); |
| 244 | arg::value(g_map,kmap,gs,spacing,cols,-2.0*coeff/spacing[d]); |
| 245 | kmap.getKeyRef().set_d(d,old_val); |
| 246 | |
| 247 | old_val = kmap.getKeyRef().get(d); |
| 248 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) - 2); |
| 249 | arg::value(g_map,kmap,gs,spacing,cols,0.5*coeff/spacing[d]); |
| 250 | kmap.getKeyRef().set_d(d,old_val); |
| 251 | } |
| 252 | else if (pos.get(d) == 0) |
| 253 | { |
| 254 | arg::value(g_map,kmap,gs,spacing,cols,-1.5*coeff/spacing[d]); |
| 255 | |
| 256 | long int old_val = kmap.getKeyRef().get(d); |
| 257 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) + 1); |
| 258 | arg::value(g_map,kmap,gs,spacing,cols,2.0*coeff/spacing[d]); |
| 259 | kmap.getKeyRef().set_d(d,old_val); |
| 260 | |
| 261 | old_val = kmap.getKeyRef().get(d); |
| 262 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) + 2); |
| 263 | arg::value(g_map,kmap,gs,spacing,cols,-0.5*coeff/spacing[d]); |
| 264 | kmap.getKeyRef().set_d(d,old_val); |
| 265 | } |
| 266 | else |
| 267 | { |
| 268 | long int old_val = kmap.getKeyRef().get(d); |
| 269 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) + 1); |
| 270 | arg::value(g_map,kmap,gs,spacing,cols,coeff/spacing[d]); |
| 271 | kmap.getKeyRef().set_d(d,old_val); |
| 272 | |
| 273 | old_val = kmap.getKeyRef().get(d); |
| 274 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) - 1); |
| 275 | arg::value(g_map,kmap,gs,spacing,cols,-coeff/spacing[d]); |
| 276 | kmap.getKeyRef().set_d(d,old_val); |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /*! \brief Calculate the position where the derivative is calculated |
| 281 | * |
| 282 | * In case on non staggered case this function just return a null grid_key, in case of staggered, |
| 283 | * it calculate how the operator shift in the cell |
| 284 | * |
| 285 | \verbatim |
| 286 | |
| 287 | +--$--+ |
| 288 | | | |
| 289 | # * # |
| 290 | | | |
| 291 | 0--$--+ |
| 292 | |
| 293 | # = velocity(y) |
| 294 | $ = velocity(x) |
| 295 | * = pressure |
| 296 | |
| 297 | \endverbatim |
| 298 | * |
| 299 | * In the one side stencil the cell position depend if you are or not at the boundary. |
| 300 | * outside the boundary is simply the central scheme, at the boundary it is simply the |
| 301 | * staggered position of the property |
| 302 | * |
| 303 | * \param pos position where we are calculating the derivative |
| 304 | * \param gs Grid info |
| 305 | * \param s_pos staggered position of the properties |
| 306 | * |
| 307 | * \return where (in which cell grid) the derivative is calculated |
| 308 | * |
| 309 | */ |
| 310 | inline static grid_key_dx<Sys_eqs::dims> position(grid_key_dx<Sys_eqs::dims> & pos, const grid_sm<Sys_eqs::dims,void> & gs, const comb<Sys_eqs::dims> (& s_pos)[Sys_eqs::nvar]) |
| 311 | { |
| 312 | return arg::position(pos,gs,s_pos); |
| 313 | } |
| 314 | }; |
| 315 | |
| 316 | |
| 317 | /*! \brief First order FORWARD derivative on direction i |
| 318 | * |
| 319 | * \verbatim |
| 320 | * |
| 321 | * -1.0 1.0 |
| 322 | * +------* |
| 323 | * |
| 324 | * \endverbatim |
| 325 | * |
| 326 | */ |
| 327 | template<unsigned int d, typename arg, typename Sys_eqs> |
| 328 | class D<d,arg,Sys_eqs,FORWARD> |
| 329 | { |
| 330 | public: |
| 331 | |
| 332 | /*! \brief Calculate which colums of the Matrix are non zero |
| 333 | * |
| 334 | * \param g_map mapping grid |
| 335 | * \param kmap position where the derivative is calculated |
| 336 | * \param gs Grid info |
| 337 | * \param spacing grid spacing |
| 338 | * \param cols non-zero colums calculated by the function |
| 339 | * \param coeff coefficent (constant in front of the derivative) |
| 340 | * |
| 341 | * ### Example |
| 342 | * |
| 343 | * \snippet FDScheme_unit_tests.hpp Usage of stencil derivative |
| 344 | * |
| 345 | */ |
| 346 | inline static void value(const typename stub_or_real<Sys_eqs,Sys_eqs::dims,typename Sys_eqs::stype,typename Sys_eqs::b_grid::decomposition::extended_type>::type & g_map, |
| 347 | grid_dist_key_dx<Sys_eqs::dims> & kmap, |
| 348 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 349 | typename Sys_eqs::stype (& spacing )[Sys_eqs::dims], |
| 350 | std::unordered_map<long int,typename Sys_eqs::stype > & cols, |
| 351 | typename Sys_eqs::stype coeff) |
| 352 | { |
| 353 | |
| 354 | long int old_val = kmap.getKeyRef().get(d); |
| 355 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) + 1); |
| 356 | arg::value(g_map,kmap,gs,spacing,cols,coeff/spacing[d]); |
| 357 | kmap.getKeyRef().set_d(d,old_val); |
| 358 | |
| 359 | // backward |
| 360 | arg::value(g_map,kmap,gs,spacing,cols,-coeff/spacing[d]); |
| 361 | } |
| 362 | |
| 363 | |
| 364 | /*! \brief Calculate the position where the derivative is calculated |
| 365 | * |
| 366 | * In case of non staggered case this function just return a null grid_key, in case of staggered, |
| 367 | * the FORWARD scheme return the position of the staggered property |
| 368 | * |
| 369 | * \param pos position where we are calculating the derivative |
| 370 | * \param gs Grid info |
| 371 | * \param s_pos staggered position of the properties |
| 372 | * |
| 373 | * \return where (in which cell grid) the derivative is calculated |
| 374 | * |
| 375 | */ |
| 376 | inline static grid_key_dx<Sys_eqs::dims> position(grid_key_dx<Sys_eqs::dims> & pos, |
| 377 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 378 | const comb<Sys_eqs::dims> (& s_pos)[Sys_eqs::nvar]) |
| 379 | { |
| 380 | return arg::position(pos,gs,s_pos); |
| 381 | } |
| 382 | }; |
| 383 | |
| 384 | /*! \brief First order BACKWARD derivative on direction i |
| 385 | * |
| 386 | * \verbatim |
| 387 | * |
| 388 | * -1.0 1.0 |
| 389 | * *------+ |
| 390 | * |
| 391 | * \endverbatim |
| 392 | * |
| 393 | */ |
| 394 | template<unsigned int d, typename arg, typename Sys_eqs> |
| 395 | class D<d,arg,Sys_eqs,BACKWARD> |
| 396 | { |
| 397 | public: |
| 398 | |
| 399 | /*! \brief Calculate which colums of the Matrix are non zero |
| 400 | * |
| 401 | * \param g_map mapping grid |
| 402 | * \param kmap position where the derivative is calculated |
| 403 | * \param gs Grid info |
| 404 | * \param spacing of the grid |
| 405 | * \param cols non-zero colums calculated by the function |
| 406 | * \param coeff coefficent (constant in front of the derivative) |
| 407 | * |
| 408 | * ### Example |
| 409 | * |
| 410 | * \snippet FDScheme_unit_tests.hpp Usage of stencil derivative |
| 411 | * |
| 412 | */ |
| 413 | inline static void value(const typename stub_or_real<Sys_eqs,Sys_eqs::dims,typename Sys_eqs::stype,typename Sys_eqs::b_grid::decomposition::extended_type>::type & g_map, |
| 414 | grid_dist_key_dx<Sys_eqs::dims> & kmap, |
| 415 | const grid_sm<Sys_eqs::dims,void> & gs, |
| 416 | typename Sys_eqs::stype (& spacing )[Sys_eqs::dims], |
| 417 | std::unordered_map<long int,typename Sys_eqs::stype > & cols, |
| 418 | typename Sys_eqs::stype coeff) |
| 419 | { |
| 420 | |
| 421 | long int old_val = kmap.getKeyRef().get(d); |
| 422 | kmap.getKeyRef().set_d(d, kmap.getKeyRef().get(d) - 1); |
| 423 | arg::value(g_map,kmap,gs,spacing,cols,-coeff/spacing[d]); |
| 424 | kmap.getKeyRef().set_d(d,old_val); |
| 425 | |
| 426 | // forward |
| 427 | arg::value(g_map,kmap,gs,spacing,cols,coeff/spacing[d]); |
| 428 | } |
| 429 | |
| 430 | |
| 431 | /*! \brief Calculate the position where the derivative is calculated |
| 432 | * |
| 433 | * In case of non staggered case this function just return a null grid_key, in case of staggered, |
| 434 | * the BACKWARD scheme return the position of the staggered property |
| 435 | * |
| 436 | * \param pos position where we are calculating the derivative |
| 437 | * \param gs Grid info |
| 438 | * \param s_pos staggered position of the properties |
| 439 | * |
| 440 | * \return where (in which cell grid) the derivative is calculated |
| 441 | * |
| 442 | */ |
| 443 | inline static grid_key_dx<Sys_eqs::dims> position(grid_key_dx<Sys_eqs::dims> & pos, const grid_sm<Sys_eqs::dims,void> & gs, const comb<Sys_eqs::dims> (& s_pos)[Sys_eqs::nvar]) |
| 444 | { |
| 445 | return arg::position(pos,gs,s_pos); |
| 446 | } |
| 447 | }; |
| 448 | |
| 449 | #endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_DERIVATIVE_HPP_ */ |
| 450 | |