1 | /* |
2 | * eq_unit_test_3d.hpp |
3 | * |
4 | * Created on: Jan 4, 2016 |
5 | * Author: i-bird |
6 | */ |
7 | |
8 | #ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ |
9 | #define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ |
10 | |
11 | #define BOOST_TEST_DYN_LINK |
12 | #include <boost/test/unit_test.hpp> |
13 | |
14 | #include "config.h" |
15 | #include "Laplacian.hpp" |
16 | #include "FiniteDifference/eq.hpp" |
17 | #include "FiniteDifference/sum.hpp" |
18 | #include "FiniteDifference/mul.hpp" |
19 | #include "Grid/grid_dist_id.hpp" |
20 | #include "Decomposition/CartDecomposition.hpp" |
21 | #include "Vector/Vector.hpp" |
22 | #include "Solvers/umfpack_solver.hpp" |
23 | #include "data_type/aggregate.hpp" |
24 | #include "Solvers/petsc_solver.hpp" |
25 | #include "FiniteDifference/FDScheme.hpp" |
26 | |
27 | BOOST_AUTO_TEST_SUITE( eq_test_suite_3d ) |
28 | |
29 | //! Specify the general caratteristic of system to solve |
30 | struct lid_nn_3d_eigen |
31 | { |
32 | //! dimensionaly of the equation ( 3D problem ...) |
33 | static const unsigned int dims = 3; |
34 | //! number of fields in the system |
35 | static const unsigned int nvar = 4; |
36 | |
37 | //! boundary at X and Y |
38 | static const bool boundary[]; |
39 | |
40 | //! type of space float, double, ... |
41 | typedef float stype; |
42 | |
43 | //! type of base grid |
44 | typedef grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> b_grid; |
45 | |
46 | //! type of SparseMatrix for the linear solver |
47 | typedef SparseMatrix<double,int,EIGEN_BASE> SparseMatrix_type; |
48 | |
49 | //! type of Vector for the linear solver |
50 | typedef Vector<double> Vector_type; |
51 | |
52 | //! Define the underline grid is staggered |
53 | static const int grid_type = STAGGERED_GRID; |
54 | }; |
55 | |
56 | struct lid_nn_3d_petsc |
57 | { |
58 | //! dimensionaly of the equation ( 3D problem ...) |
59 | static const unsigned int dims = 3; |
60 | //! number of fields in the system |
61 | static const unsigned int nvar = 4; |
62 | |
63 | //! boundary at X and Y |
64 | static const bool boundary[]; |
65 | |
66 | //! type of space float, double, ... |
67 | typedef float stype; |
68 | |
69 | //! type of base grid |
70 | typedef grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> b_grid; |
71 | |
72 | //! type of SparseMatrix for the linear solver |
73 | typedef SparseMatrix<double,int,PETSC_BASE> SparseMatrix_type; |
74 | |
75 | //! type of Vector for the linear solver |
76 | typedef Vector<double,PETSC_BASE> Vector_type; |
77 | |
78 | //! Define the underline grid is staggered |
79 | static const int grid_type = STAGGERED_GRID; |
80 | }; |
81 | |
82 | //typedef lid_nn_3d_eigen lid_nn_3d; |
83 | |
84 | const bool lid_nn_3d_eigen::boundary[] = {NON_PERIODIC,NON_PERIODIC,NON_PERIODIC}; |
85 | const bool lid_nn_3d_petsc::boundary[] = {NON_PERIODIC,NON_PERIODIC,NON_PERIODIC}; |
86 | |
87 | // Constant Field |
88 | struct eta |
89 | { |
90 | //! define that eta is a constant field |
91 | typedef void const_field; |
92 | |
93 | //! therutn the value of the constant |
94 | static float val() {return 1.0;} |
95 | }; |
96 | |
97 | template<typename solver_type,typename lid_nn_3d> void lid_driven_cavity_3d() |
98 | { |
99 | #include "Equations/stoke_flow_eq_3d.hpp" |
100 | |
101 | Vcluster<> & v_cl = create_vcluster(); |
102 | |
103 | if (v_cl.getProcessingUnits() > 3) |
104 | return; |
105 | |
106 | // Domain |
107 | Box<3,float> domain({0.0,0.0,0.0},{3.0,1.0,1.0}); |
108 | |
109 | // Ghost |
110 | Ghost<3,float> g(0.01); |
111 | |
112 | long int sz[] = {36,12,12}; |
113 | size_t szu[3]; |
114 | szu[0] = (size_t)sz[0]; |
115 | szu[1] = (size_t)sz[1]; |
116 | szu[2] = (size_t)sz[2]; |
117 | |
118 | Padding<3> pd({1,1,1},{0,0,0}); |
119 | |
120 | // velocity in the grid is the property 0, pressure is the property 1 |
121 | constexpr int velocity = 0; |
122 | constexpr int pressure = 1; |
123 | |
124 | // Initialize openfpm |
125 | grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> g_dist(szu,domain,g); |
126 | |
127 | // Ghost stencil |
128 | Ghost<3,long int> stencil_max(1); |
129 | |
130 | // Distributed grid |
131 | FDScheme<lid_nn_3d> fd(pd,stencil_max,domain,g_dist); |
132 | |
133 | // start and end of the bulk |
134 | |
135 | fd.impose(ic_eq(),0.0, EQ_4, {0,0,0},{sz[0]-2,sz[1]-2,sz[2]-2},true); |
136 | fd.impose(Prs(), 0.0, EQ_4, {0,0,0},{0,0,0}); |
137 | fd.impose(vx_eq(),0.0, EQ_1, {1,0},{sz[0]-2,sz[1]-2,sz[2]-2}); |
138 | fd.impose(vy_eq(),0.0, EQ_2, {0,1},{sz[0]-2,sz[1]-2,sz[2]-2}); |
139 | fd.impose(vz_eq(),0.0, EQ_3, {0,0,1},{sz[0]-2,sz[1]-2,sz[2]-2}); |
140 | |
141 | // v_x |
142 | // R L |
143 | fd.impose(v_x(),0.0, EQ_1, {0,0,0}, {0,sz[1]-2,sz[2]-2}); |
144 | fd.impose(v_x(),0.0, EQ_1, {sz[0]-1,0,0},{sz[0]-1,sz[1]-2,sz[2]-2}); |
145 | |
146 | // T B |
147 | fd.impose(avg_y_vx_f(),0.0, EQ_1, {0,-1,0}, {sz[0]-1,-1,sz[2]-2}); |
148 | fd.impose(avg_y_vx(),0.0, EQ_1, {0,sz[1]-1,0},{sz[0]-1,sz[1]-1,sz[2]-2}); |
149 | |
150 | // A F |
151 | fd.impose(avg_z_vx_f(),0.0, EQ_1, {0,-1,-1}, {sz[0]-1,sz[1]-1,-1}); |
152 | fd.impose(avg_z_vx(),0.0, EQ_1, {0,-1,sz[2]-1},{sz[0]-1,sz[1]-1,sz[2]-1}); |
153 | |
154 | // v_y |
155 | // R L |
156 | fd.impose(avg_x_vy_f(),0.0, EQ_2, {-1,0,0}, {-1,sz[1]-1,sz[2]-2}); |
157 | fd.impose(avg_x_vy(),1.0, EQ_2, {sz[0]-1,0,0},{sz[0]-1,sz[1]-1,sz[2]-2}); |
158 | |
159 | // T B |
160 | fd.impose(v_y(), 0.0, EQ_2, {0,0,0}, {sz[0]-2,0,sz[2]-2}); |
161 | fd.impose(v_y(), 0.0, EQ_2, {0,sz[1]-1,0},{sz[0]-2,sz[1]-1,sz[2]-2}); |
162 | |
163 | // F A |
164 | fd.impose(avg_z_vy(),0.0, EQ_2, {-1,0,sz[2]-1}, {sz[0]-1,sz[1]-1,sz[2]-1}); |
165 | fd.impose(avg_z_vy_f(),0.0, EQ_2, {-1,0,-1}, {sz[0]-1,sz[1]-1,-1}); |
166 | |
167 | // v_z |
168 | // R L |
169 | fd.impose(avg_x_vz_f(),0.0, EQ_3, {-1,0,0}, {-1,sz[1]-2,sz[2]-1}); |
170 | fd.impose(avg_x_vz(),1.0, EQ_3, {sz[0]-1,0,0},{sz[0]-1,sz[1]-2,sz[2]-1}); |
171 | |
172 | // T B |
173 | fd.impose(avg_y_vz(),0.0, EQ_3, {-1,sz[1]-1,0},{sz[0]-1,sz[1]-1,sz[2]-1}); |
174 | fd.impose(avg_y_vz_f(),0.0, EQ_3, {-1,-1,0}, {sz[0]-1,-1,sz[2]-1}); |
175 | |
176 | // F A |
177 | fd.impose(v_z(),0.0, EQ_3, {0,0,0}, {sz[0]-2,sz[1]-2,0}); |
178 | fd.impose(v_z(),0.0, EQ_3, {0,0,sz[2]-1},{sz[0]-2,sz[1]-2,sz[2]-1}); |
179 | |
180 | // Padding pressure |
181 | |
182 | // L R |
183 | fd.impose(Prs(), 0.0, EQ_4, {-1,-1,-1},{-1,sz[1]-1,sz[2]-1}); |
184 | fd.impose(Prs(), 0.0, EQ_4, {sz[0]-1,-1,-1},{sz[0]-1,sz[1]-1,sz[2]-1}); |
185 | |
186 | // T B |
187 | fd.impose(Prs(), 0.0, EQ_4, {0,sz[1]-1,-1}, {sz[0]-2,sz[1]-1,sz[2]-1}); |
188 | fd.impose(Prs(), 0.0, EQ_4, {0,-1 ,-1}, {sz[0]-2,-1, sz[2]-1}); |
189 | |
190 | // F A |
191 | fd.impose(Prs(), 0.0, EQ_4, {0,0,sz[2]-1}, {sz[0]-2,sz[1]-2,sz[2]-1}); |
192 | fd.impose(Prs(), 0.0, EQ_4, {0,0,-1}, {sz[0]-2,sz[1]-2,-1}); |
193 | |
194 | // Impose v_x v_y v_z padding |
195 | fd.impose(v_x(), 0.0, EQ_1, {-1,-1,-1},{-1,sz[1]-1,sz[2]-1}); |
196 | fd.impose(v_y(), 0.0, EQ_2, {-1,-1,-1},{sz[0]-1,-1,sz[2]-1}); |
197 | fd.impose(v_z(), 0.0, EQ_3, {-1,-1,-1},{sz[0]-1,sz[1]-1,-1}); |
198 | |
199 | solver_type solver; |
200 | auto x_ = solver.try_solve(fd.getA(),fd.getB()); |
201 | |
202 | // Bring the solution to grid |
203 | fd.template copy<velocity,pressure>(x_,{0,0},{sz[0]-1,sz[1]-1,sz[2]-1},g_dist); |
204 | |
205 | std::string s = std::string(demangle(typeid(solver_type).name())); |
206 | s += "_" ; |
207 | |
208 | g_dist.write(s + "lid_driven_cavity_3d_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid" ); |
209 | |
210 | #if !(defined(SE_CLASS3) || defined(TEST_COVERAGE_MODE)) |
211 | |
212 | // Initialize openfpm |
213 | grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> g_dist2(g_dist.getDecomposition(),szu,g); |
214 | g_dist2.load("test/lid_driven_cavity_3d_reference.hdf5" ); |
215 | |
216 | auto it2 = g_dist2.getDomainIterator(); |
217 | |
218 | bool test = true; |
219 | while (it2.isNext()) |
220 | { |
221 | auto p = it2.get(); |
222 | |
223 | test &= fabs(g_dist2.template getProp<velocity>(p)[0] - g_dist.template getProp<velocity>(p)[0]) < 3.5e-5; |
224 | test &= fabs(g_dist2.template getProp<velocity>(p)[1] - g_dist.template getProp<velocity>(p)[1]) < 3.5e-5; |
225 | test &= fabs(g_dist2.template getProp<velocity>(p)[2] - g_dist.template getProp<velocity>(p)[2]) < 3.5e-5; |
226 | |
227 | test &= fabs(g_dist2.template getProp<pressure>(p) - g_dist.template getProp<pressure>(p)) < 3.0e-4; |
228 | |
229 | if (test == false) |
230 | { |
231 | std::cout << g_dist2.template getProp<velocity>(p)[0] << " " << g_dist.template getProp<velocity>(p)[0] << std::endl; |
232 | std::cout << g_dist2.template getProp<velocity>(p)[1] << " " << g_dist.template getProp<velocity>(p)[1] << std::endl; |
233 | std::cout << g_dist2.template getProp<velocity>(p)[2] << " " << g_dist.template getProp<velocity>(p)[2] << std::endl; |
234 | |
235 | std::cout << g_dist2.template getProp<pressure>(p) << " " << g_dist.template getProp<pressure>(p) << std::endl; |
236 | |
237 | break; |
238 | } |
239 | |
240 | ++it2; |
241 | } |
242 | |
243 | BOOST_REQUIRE_EQUAL(test,true); |
244 | |
245 | #endif |
246 | |
247 | } |
248 | |
249 | // Lid driven cavity, uncompressible fluid |
250 | |
251 | BOOST_AUTO_TEST_CASE(lid_driven_cavity) |
252 | { |
253 | #if defined(HAVE_EIGEN) && defined(HAVE_SUITESPARSE) |
254 | lid_driven_cavity_3d<umfpack_solver<double>,lid_nn_3d_eigen>(); |
255 | #endif |
256 | #ifdef HAVE_PETSC |
257 | lid_driven_cavity_3d<petsc_solver<double>,lid_nn_3d_petsc>(); |
258 | #endif |
259 | } |
260 | |
261 | BOOST_AUTO_TEST_SUITE_END() |
262 | |
263 | |
264 | #endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ */ |
265 | |