| 1 | /* |
| 2 | * Kernels.hpp |
| 3 | * |
| 4 | * Created on: Jan 12, 2016 |
| 5 | * Author: i-bird |
| 6 | */ |
| 7 | |
| 8 | #ifndef OPENFPM_NUMERICS_SRC_PSE_KERNELS_HPP_ |
| 9 | #define OPENFPM_NUMERICS_SRC_PSE_KERNELS_HPP_ |
| 10 | |
| 11 | #include <boost/math/constants/constants.hpp> |
| 12 | |
| 13 | // Gaussian kernel |
| 14 | #define KER_GAUSSIAN 1 |
| 15 | |
| 16 | /*! \brief Implementation of the Laplacian kernels for PSE |
| 17 | * |
| 18 | * \tparam dim Dimension |
| 19 | * \tparam T type |
| 20 | * \ord order pf approximation (default 2) |
| 21 | * \impl TYPE of kernel |
| 22 | * |
| 23 | */ |
| 24 | template<unsigned int dim, typename T, unsigned int ord=2, unsigned int impl=KER_GAUSSIAN> |
| 25 | struct Lap_PSE |
| 26 | { |
| 27 | T epsilon; |
| 28 | |
| 29 | Lap_PSE(T epsilon) |
| 30 | :epsilon(epsilon) |
| 31 | {} |
| 32 | |
| 33 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 34 | * |
| 35 | * \param x center of the kernel |
| 36 | * \param y where we calculate the kernel |
| 37 | * |
| 38 | */ |
| 39 | inline T value(T (&x)[dim], T (&y)[dim]) |
| 40 | { |
| 41 | std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " The laplacian for order:" << ord << " in dimension " << dim << " has not been implemented" ; |
| 42 | return 0.0; |
| 43 | } |
| 44 | |
| 45 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 46 | * |
| 47 | * \param x center of the kernel |
| 48 | * \param y where we calculate the kernel |
| 49 | * |
| 50 | */ |
| 51 | inline T value(T (&x)[dim], const Point<dim,T> & y) |
| 52 | { |
| 53 | std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " The laplacian for order:" << ord << " in dimension " << dim << " has not been implemented" ; |
| 54 | return 0.0; |
| 55 | } |
| 56 | |
| 57 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 58 | * |
| 59 | * \param x center of the kernel |
| 60 | * \param y where we calculate the kernel |
| 61 | * |
| 62 | */ |
| 63 | inline T value(const Point<dim,T> & x, T (&y)[dim]) |
| 64 | { |
| 65 | std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " The laplacian for order:" << ord << " in dimension " << dim << " has not been implemented" ; |
| 66 | return 0.0; |
| 67 | } |
| 68 | |
| 69 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 70 | * |
| 71 | * \param x center of the kernel |
| 72 | * \param y where we calculate the kernel |
| 73 | * |
| 74 | */ |
| 75 | inline T value(const Point<dim,T> & x, const Point<dim,T> & y) |
| 76 | { |
| 77 | std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " The laplacian for order:" << ord << " in dimension " << dim << " has not been implemented" ; |
| 78 | return 0.0; |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | template<typename T> |
| 83 | struct Lap_PSE<1,T,2,KER_GAUSSIAN> |
| 84 | { |
| 85 | T epsilon; |
| 86 | |
| 87 | inline Lap_PSE(T epsilon) |
| 88 | :epsilon(epsilon) |
| 89 | {} |
| 90 | |
| 91 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 92 | * |
| 93 | * \param x center of the kernel |
| 94 | * \param y where we calculate the kernel |
| 95 | * |
| 96 | */ |
| 97 | inline T value(T (&x)[1], T (&y)[1]) |
| 98 | { |
| 99 | T d = 0.0; |
| 100 | for (size_t i = 0 ; i < 1 ; i++) |
| 101 | d += (x[i] - y[i]) * (x[i] - y[i]); |
| 102 | d = sqrt(d) / epsilon; |
| 103 | |
| 104 | return T(4.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d); |
| 105 | } |
| 106 | |
| 107 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 108 | * |
| 109 | * \param x center of the kernel |
| 110 | * \param y where we calculate the kernel |
| 111 | * |
| 112 | */ |
| 113 | inline T value(T (&x)[1], const Point<1,T> & y) |
| 114 | { |
| 115 | T d = 0.0; |
| 116 | for (size_t i = 0 ; i < 1 ; i++) |
| 117 | d += (x[i] - y.get(i)) * (x[i] - y.get(i)); |
| 118 | d = sqrt(d) / epsilon; |
| 119 | |
| 120 | return T(4.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d); |
| 121 | } |
| 122 | |
| 123 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 124 | * |
| 125 | * \param x center of the kernel |
| 126 | * \param y where we calculate the kernel |
| 127 | * |
| 128 | */ |
| 129 | inline T value(const Point<1,T> & x, T (&y)[1]) |
| 130 | { |
| 131 | T d = 0.0; |
| 132 | for (size_t i = 0 ; i < 1 ; i++) |
| 133 | d += (x.get(i) - y[i]) * (x.get(i) - y[i]); |
| 134 | d = sqrt(d) / epsilon; |
| 135 | |
| 136 | return T(4.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d); |
| 137 | } |
| 138 | |
| 139 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 140 | * |
| 141 | * \param x center of the kernel |
| 142 | * \param y where we calculate the kernel |
| 143 | * |
| 144 | */ |
| 145 | inline T value(const Point<1,T> & x, const Point<1,T> & y) |
| 146 | { |
| 147 | T d = 0.0; |
| 148 | for (size_t i = 0 ; i < 1 ; i++) |
| 149 | d += (x.get(i) - y.get(i)) * (x.get(i) - y.get(i)); |
| 150 | d = sqrt(d) / epsilon; |
| 151 | |
| 152 | return T(4.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d); |
| 153 | } |
| 154 | }; |
| 155 | |
| 156 | template<typename T> |
| 157 | struct Lap_PSE<1,T,4,KER_GAUSSIAN> |
| 158 | { |
| 159 | T epsilon; |
| 160 | |
| 161 | inline Lap_PSE(T epsilon) |
| 162 | :epsilon(epsilon) |
| 163 | {} |
| 164 | |
| 165 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 166 | * |
| 167 | * \param x center of the kernel |
| 168 | * \param y where we calculate the kernel |
| 169 | * |
| 170 | */ |
| 171 | inline T value(T (&x)[1], T (&y)[1]) |
| 172 | { |
| 173 | T d = 0.0; |
| 174 | for (size_t i = 0 ; i < 1 ; i++) |
| 175 | d += (x[i] - y[i]) * (x[i] - y[i]); |
| 176 | d = sqrt(d) / epsilon; |
| 177 | |
| 178 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-4.0*d*d+10.0); |
| 179 | } |
| 180 | |
| 181 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 182 | * |
| 183 | * \param x center of the kernel |
| 184 | * \param y where we calculate the kernel |
| 185 | * |
| 186 | */ |
| 187 | inline T value(T (&x)[1], const Point<1,T> & y) |
| 188 | { |
| 189 | T d = 0.0; |
| 190 | for (size_t i = 0 ; i < 1 ; i++) |
| 191 | d += (x[i] - y.get(i)) * (x[i] - y.get(i)); |
| 192 | d = sqrt(d) / epsilon; |
| 193 | |
| 194 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-4.0*d*d+10.0); |
| 195 | } |
| 196 | |
| 197 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 198 | * |
| 199 | * \param x center of the kernel |
| 200 | * \param y where we calculate the kernel |
| 201 | * |
| 202 | */ |
| 203 | inline T value(const Point<1,T> & x, T (&y)[1]) |
| 204 | { |
| 205 | T d = 0.0; |
| 206 | for (size_t i = 0 ; i < 1 ; i++) |
| 207 | d += (x.get(i) - y[i]) * (x.get(i) - y[i]); |
| 208 | d = sqrt(d) / epsilon; |
| 209 | |
| 210 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-4.0*d*d+10.0); |
| 211 | } |
| 212 | |
| 213 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 214 | * |
| 215 | * \param x center of the kernel |
| 216 | * \param y where we calculate the kernel |
| 217 | * |
| 218 | */ |
| 219 | inline T value(const Point<1,T> & x, const Point<1,T> & y) |
| 220 | { |
| 221 | T d = 0.0; |
| 222 | for (size_t i = 0 ; i < 1 ; i++) |
| 223 | d += (x.get(i) - y.get(i)) * (x.get(i) - y.get(i)); |
| 224 | d = sqrt(d) / epsilon; |
| 225 | |
| 226 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-4.0*d*d+10.0); |
| 227 | } |
| 228 | }; |
| 229 | |
| 230 | template<typename T> |
| 231 | struct Lap_PSE<1,T,6,KER_GAUSSIAN> |
| 232 | { |
| 233 | T epsilon; |
| 234 | |
| 235 | inline Lap_PSE(T epsilon) |
| 236 | :epsilon(epsilon) |
| 237 | {} |
| 238 | |
| 239 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 240 | * |
| 241 | * \param x center of the kernel |
| 242 | * \param y where we calculate the kernel |
| 243 | * |
| 244 | */ |
| 245 | inline T value(T (&x)[1], T (&y)[1]) |
| 246 | { |
| 247 | T d = 0.0; |
| 248 | for (size_t i = 0 ; i < 1 ; i++) |
| 249 | d += (x[i] - y[i]) * (x[i] - y[i]); |
| 250 | d = sqrt(d) / epsilon; |
| 251 | |
| 252 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (2.0*d*d*d*d-14.0*d*d+35.0/2.0); |
| 253 | } |
| 254 | |
| 255 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 256 | * |
| 257 | * \param x center of the kernel |
| 258 | * \param y where we calculate the kernel |
| 259 | * |
| 260 | */ |
| 261 | inline T value(T (&x)[1], const Point<1,T> & y) |
| 262 | { |
| 263 | T d = 0.0; |
| 264 | for (size_t i = 0 ; i < 1 ; i++) |
| 265 | d += (x[i] - y.get(i)) * (x[i] - y.get(i)); |
| 266 | d = sqrt(d) / epsilon; |
| 267 | |
| 268 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (2.0*d*d*d*d-14.0*d*d+35.0/2.0); |
| 269 | } |
| 270 | |
| 271 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 272 | * |
| 273 | * \param x center of the kernel |
| 274 | * \param y where we calculate the kernel |
| 275 | * |
| 276 | */ |
| 277 | inline T value(const Point<1,T> & x, T (&y)[1]) |
| 278 | { |
| 279 | T d = 0.0; |
| 280 | for (size_t i = 0 ; i < 1 ; i++) |
| 281 | d += (x.get(i) - y[i]) * (x.get(i) - y[i]); |
| 282 | d = sqrt(d) / epsilon; |
| 283 | |
| 284 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (2.0*d*d*d*d-14.0*d*d+35.0/2.0); |
| 285 | } |
| 286 | |
| 287 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 288 | * |
| 289 | * \param x center of the kernel |
| 290 | * \param y where we calculate the kernel |
| 291 | * |
| 292 | */ |
| 293 | inline T value(const Point<1,T> & x, const Point<1,T> & y) |
| 294 | { |
| 295 | T d = 0.0; |
| 296 | for (size_t i = 0 ; i < 1 ; i++) |
| 297 | d += (x.get(i) - y.get(i)) * (x.get(i) - y.get(i)); |
| 298 | d = sqrt(d) / epsilon; |
| 299 | |
| 300 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (2.0*d*d*d*d-14.0*d*d+35.0/2.0); |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | template<typename T> |
| 305 | struct Lap_PSE<1,T,8,KER_GAUSSIAN> |
| 306 | { |
| 307 | T epsilon; |
| 308 | |
| 309 | inline Lap_PSE(T epsilon) |
| 310 | :epsilon(epsilon) |
| 311 | {} |
| 312 | |
| 313 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 314 | * |
| 315 | * \param x center of the kernel |
| 316 | * \param y where we calculate the kernel |
| 317 | * |
| 318 | */ |
| 319 | inline T value(T (&x)[1], T (&y)[1]) |
| 320 | { |
| 321 | T d = 0.0; |
| 322 | for (size_t i = 0 ; i < 1 ; i++) |
| 323 | d += (x[i] - y[i]) * (x[i] - y[i]); |
| 324 | d = sqrt(d) / epsilon; |
| 325 | |
| 326 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-T(2.0)/T(3.0)*d*d*d*d*d*d+9.0*d*d*d*d-63.0/2.0*d*d+105.0/4.0); |
| 327 | } |
| 328 | |
| 329 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 330 | * |
| 331 | * \param x center of the kernel |
| 332 | * \param y where we calculate the kernel |
| 333 | * |
| 334 | */ |
| 335 | inline T value(T (&x)[1], const Point<1,T> & y) |
| 336 | { |
| 337 | T d = 0.0; |
| 338 | for (size_t i = 0 ; i < 1 ; i++) |
| 339 | d += (x[i] - y.get(i)) * (x[i] - y.get(i)); |
| 340 | d = sqrt(d) / epsilon; |
| 341 | |
| 342 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-T(2.0)/T(3.0)*d*d*d*d*d*d+9.0*d*d*d*d-63.0/2.0*d*d+105.0/4.0); |
| 343 | } |
| 344 | |
| 345 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 346 | * |
| 347 | * \param x center of the kernel |
| 348 | * \param y where we calculate the kernel |
| 349 | * |
| 350 | */ |
| 351 | inline T value(const Point<1,T> & x, T (&y)[1]) |
| 352 | { |
| 353 | T d = 0.0; |
| 354 | for (size_t i = 0 ; i < 1 ; i++) |
| 355 | d += (x.get(i) - y[i]) * (x.get(i) - y[i]); |
| 356 | d = sqrt(d) / epsilon; |
| 357 | |
| 358 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-T(2.0)/T(3.0)*d*d*d*d*d*d+9.0*d*d*d*d-63.0/2.0*d*d+105.0/4.0); |
| 359 | } |
| 360 | |
| 361 | /*! \brief From a kernel centered in x, it give the value of the kernel in y |
| 362 | * |
| 363 | * \param x center of the kernel |
| 364 | * \param y where we calculate the kernel |
| 365 | * |
| 366 | */ |
| 367 | inline T value(const Point<1,T> & x, const Point<1,T> & y) |
| 368 | { |
| 369 | T d = 0.0; |
| 370 | for (size_t i = 0 ; i < 1 ; i++) |
| 371 | d += (x.get(i) - y.get(i)) * (x.get(i) - y.get(i)); |
| 372 | d = sqrt(d) / epsilon; |
| 373 | |
| 374 | return T(1.0) / epsilon / boost::math::constants::root_pi<T>() * exp(-d*d) * (-T(2.0)/T(3.0)*d*d*d*d*d*d+9.0*d*d*d*d-63.0/2.0*d*d+105.0/4.0); |
| 375 | } |
| 376 | }; |
| 377 | |
| 378 | #endif /* OPENFPM_NUMERICS_SRC_PSE_KERNELS_HPP_ */ |
| 379 | |