1 | /* |
2 | * parmetis_util.hpp |
3 | * |
4 | * Created on: Oct 07, 2015 |
5 | * Author: Antonio Leo |
6 | */ |
7 | |
8 | #ifndef DISTPARMETIS_UTIL_HPP |
9 | #define DISTPARMETIS_UTIL_HPP |
10 | |
11 | #include <iostream> |
12 | #include "parmetis.h" |
13 | #include "VTKWriter/VTKWriter.hpp" |
14 | #include "VCluster/VCluster.hpp" |
15 | |
16 | /*! \brief Metis graph structure |
17 | * |
18 | * Metis graph structure |
19 | * |
20 | */ |
21 | struct Parmetis_dist_graph |
22 | { |
23 | //! The number of vertices in the graph |
24 | idx_t * nvtxs; |
25 | |
26 | //! number of balancing constrains |
27 | //! more practical, are the number of weights for each vertex |
28 | //! PS even we you specify vwgt == NULL ncon must be set at leat to |
29 | //! one |
30 | idx_t * ncon; |
31 | |
32 | //! For each vertex it store the adjacency lost start for the vertex i |
33 | idx_t * xadj; |
34 | |
35 | //! For each vertex it store a list of all neighborhood vertex |
36 | idx_t * adjncy; |
37 | |
38 | //! Array that store the weight for each vertex |
39 | idx_t * vwgt; |
40 | |
41 | //! Array of the vertex size, basically is the total communication amount |
42 | idx_t * vsize; |
43 | |
44 | //! The weight of the edge |
45 | idx_t * adjwgt; |
46 | |
47 | //! number of part to partition the graph |
48 | idx_t * nparts; |
49 | |
50 | //! Desired weight for each partition (one for each constrain) |
51 | real_t * tpwgts; |
52 | |
53 | //! For each partition load imbalance tollerated |
54 | real_t * ubvec; |
55 | |
56 | //! Additional option for the graph partitioning |
57 | idx_t * options; |
58 | |
59 | //! return the total comunication cost for each partition |
60 | idx_t * objval; |
61 | |
62 | //! Is a output vector containing the partition for each vertex |
63 | idx_t * part; |
64 | |
65 | //! Upon successful completion, the number of edges that are cut by the partitioning is written to this parameter. |
66 | idx_t * edgecut; |
67 | |
68 | //! This parameter describes the ratio of inter-processor communication time compared to data redistri- bution time. It should be set between 0.000001 and 1000000.0. If ITR is set high, a repartitioning with a low edge-cut will be computed. If it is set low, a repartitioning that requires little data redistri- bution will be computed. Good values for this parameter can be obtained by dividing inter-processor communication time by data redistribution time. Otherwise, a value of 1000.0 is recommended. |
69 | real_t * itr; |
70 | |
71 | //! This is used to indicate the numbering scheme that is used for the vtxdist, xadj, adjncy, and part arrays. (0 for C-style, start from 0 index) |
72 | idx_t * numflag; |
73 | |
74 | //! This is used to indicate if the graph is weighted. wgtflag can take one of four values: |
75 | //! 0 No weights (vwgt and adjwgt are both NULL). |
76 | //! 1 Weights on the edges only (vwgt is NULL). |
77 | //! 2 Weights on the vertices only (adjwgt is NULL). |
78 | //! 3 Weights on both the vertices and edges. |
79 | idx_t * wgtflag; |
80 | }; |
81 | |
82 | //! Balance communication and computation |
83 | #define BALANCE_CC 1 |
84 | //! Balance communication computation and memory |
85 | #define BALANCE_CCM 2 |
86 | //! Balance computation and comunication and others |
87 | #define BALANCE_CC_O(c) c+1 |
88 | |
89 | /*! \brief Helper class to define Metis graph |
90 | * |
91 | * TODO Transform pointer to openfpm vector |
92 | * |
93 | * \tparam graph structure that store the graph |
94 | * |
95 | */ |
96 | template<typename Graph> |
97 | class DistParmetis |
98 | { |
99 | //! Graph in parmetis reppresentation |
100 | Parmetis_dist_graph Mg; |
101 | |
102 | //! Communticator for OpenMPI |
103 | MPI_Comm comm = (MPI_Comm)NULL; |
104 | |
105 | //! VCluster |
106 | Vcluster<> & v_cl; |
107 | |
108 | //! Process rank information |
109 | int p_id = 0; |
110 | |
111 | //! nc Number of partition |
112 | size_t nc = 0; |
113 | |
114 | /*! \brief Construct Adjacency list |
115 | * |
116 | * \param sub_g graph in which we construct the adjacency list |
117 | * |
118 | */ |
119 | void constructAdjList(Graph & sub_g) |
120 | { |
121 | |
122 | // init basic graph informations and part vector |
123 | Mg.nvtxs[0] = sub_g.getNVertex(); |
124 | Mg.part = new idx_t[sub_g.getNVertex()]; |
125 | for (size_t i = 0; i < sub_g.getNVertex(); i++) |
126 | Mg.part[i] = p_id; |
127 | |
128 | // create xadj, adjlist, vwgt, adjwgt and vsize |
129 | Mg.xadj = new idx_t[sub_g.getNVertex() + 1]; |
130 | Mg.adjncy = new idx_t[sub_g.getNEdge()]; |
131 | Mg.vwgt = new idx_t[sub_g.getNVertex()]; |
132 | Mg.adjwgt = new idx_t[sub_g.getNEdge()]; |
133 | Mg.vsize = new idx_t[sub_g.getNVertex()]; |
134 | |
135 | //! starting point in the adjacency list |
136 | size_t prev = 0; |
137 | |
138 | // actual position |
139 | size_t id = 0; |
140 | |
141 | for (size_t i = 0, j = sub_g.firstId(); i < sub_g.getNVertex() && j <= sub_g.lastId(); i++, j++) |
142 | { |
143 | size_t idx = sub_g.nodeById(j); |
144 | |
145 | // Add weight to vertex and migration cost |
146 | Mg.vwgt[i] = sub_g.vertex(idx).template get<nm_v_computation>(); |
147 | Mg.vsize[i] = sub_g.vertex(idx).template get<nm_v_migration>(); |
148 | |
149 | // Calculate the starting point in the adjacency list |
150 | Mg.xadj[id] = prev; |
151 | |
152 | // Create the adjacency list and the weights for edges |
153 | for (size_t s = 0; s < sub_g.getNChilds(idx); s++) |
154 | { |
155 | Mg.adjncy[prev + s] = sub_g.getChild(idx, s); |
156 | |
157 | Mg.adjwgt[prev + s] = sub_g.getChildEdge(idx, s).template get<nm_e::communication>(); |
158 | } |
159 | |
160 | // update the position for the next vertex |
161 | prev += sub_g.getNChilds(idx); |
162 | |
163 | id++; |
164 | } |
165 | |
166 | // Fill the last point |
167 | Mg.xadj[id] = prev; |
168 | |
169 | } |
170 | |
171 | public: |
172 | |
173 | /*! \brief Constructor |
174 | * |
175 | * Construct a metis graph from a Graph_CSR |
176 | * |
177 | * \param v_cl Vcluster |
178 | * \param nc number of partitions |
179 | * |
180 | */ |
181 | DistParmetis(Vcluster<> & v_cl, size_t nc) : |
182 | v_cl(v_cl), nc(nc) |
183 | { |
184 | // TODO Move into VCluster |
185 | MPI_Comm_dup(MPI_COMM_WORLD, &comm); |
186 | |
187 | // Nullify Mg |
188 | Mg.nvtxs = NULL; |
189 | Mg.ncon = NULL; |
190 | Mg.xadj = NULL; |
191 | Mg.adjncy = NULL; |
192 | Mg.vwgt = NULL; |
193 | Mg.vsize = NULL; |
194 | Mg.adjwgt = NULL; |
195 | Mg.nparts = NULL; |
196 | Mg.tpwgts = NULL; |
197 | Mg.ubvec = NULL; |
198 | Mg.options = NULL; |
199 | Mg.objval = NULL; |
200 | Mg.part = NULL; |
201 | Mg.edgecut = NULL; |
202 | Mg.itr = NULL; |
203 | Mg.numflag = NULL; |
204 | Mg.wgtflag = NULL; |
205 | } |
206 | |
207 | //TODO deconstruct new variables |
208 | /*! \brief destructor |
209 | * |
210 | * Destructor, It destroy all the memory allocated |
211 | * |
212 | */ |
213 | ~DistParmetis() |
214 | { |
215 | // Deallocate the Mg structure |
216 | if (Mg.nvtxs != NULL) |
217 | { |
218 | delete[] Mg.nvtxs; |
219 | } |
220 | |
221 | if (Mg.ncon != NULL) |
222 | { |
223 | delete[] Mg.ncon; |
224 | } |
225 | |
226 | if (Mg.xadj != NULL) |
227 | { |
228 | delete[] Mg.xadj; |
229 | } |
230 | |
231 | if (Mg.adjncy != NULL) |
232 | { |
233 | delete[] Mg.adjncy; |
234 | } |
235 | |
236 | if (Mg.vwgt != NULL) |
237 | { |
238 | delete[] Mg.vwgt; |
239 | } |
240 | |
241 | if (Mg.adjwgt != NULL) |
242 | { |
243 | delete[] Mg.adjwgt; |
244 | } |
245 | |
246 | if (Mg.nparts != NULL) |
247 | { |
248 | delete[] Mg.nparts; |
249 | } |
250 | |
251 | if (Mg.tpwgts != NULL) |
252 | { |
253 | delete[] Mg.tpwgts; |
254 | } |
255 | |
256 | if (Mg.ubvec != NULL) |
257 | { |
258 | delete[] Mg.ubvec; |
259 | } |
260 | |
261 | if (Mg.options != NULL) |
262 | { |
263 | delete[] Mg.options; |
264 | } |
265 | |
266 | if (Mg.part != NULL) |
267 | { |
268 | delete[] Mg.part; |
269 | } |
270 | |
271 | if (Mg.edgecut != NULL) |
272 | { |
273 | delete[] Mg.edgecut; |
274 | } |
275 | |
276 | if (Mg.numflag != NULL) |
277 | { |
278 | delete[] Mg.numflag; |
279 | } |
280 | |
281 | if (Mg.wgtflag != NULL) |
282 | { |
283 | delete[] Mg.wgtflag; |
284 | } |
285 | |
286 | if (Mg.itr != NULL) |
287 | { |
288 | delete[] Mg.itr; |
289 | } |
290 | |
291 | if (Mg.vsize != NULL) |
292 | { |
293 | delete[] Mg.vsize; |
294 | } |
295 | } |
296 | |
297 | /*! \brief Set the Sub-graph |
298 | * |
299 | * \param sub_g Sub-graph to set |
300 | * |
301 | */ |
302 | void initSubGraph(Graph & sub_g) |
303 | { |
304 | p_id = v_cl.getProcessUnitID(); |
305 | |
306 | // Get the number of vertex |
307 | |
308 | if (Mg.nvtxs != NULL) |
309 | {delete[] Mg.nvtxs;} |
310 | Mg.nvtxs = new idx_t[1]; |
311 | Mg.nvtxs[0] = sub_g.getNVertex(); |
312 | |
313 | // Set the number of constrains |
314 | |
315 | if (Mg.ncon != NULL) |
316 | {delete[] Mg.ncon;} |
317 | Mg.ncon = new idx_t[1]; |
318 | Mg.ncon[0] = 1; |
319 | |
320 | // Set to null the weight of the vertex (init after in constructAdjList) (can be removed) |
321 | |
322 | if (Mg.vwgt != NULL) |
323 | {delete[] Mg.vwgt;} |
324 | Mg.vwgt = NULL; |
325 | |
326 | // Set to null the weight of the edge (init after in constructAdjList) (can be removed) |
327 | |
328 | if (Mg.adjwgt != NULL) |
329 | {delete[] Mg.adjwgt;} |
330 | Mg.adjwgt = NULL; |
331 | |
332 | // construct the adjacency list |
333 | |
334 | constructAdjList(sub_g); |
335 | |
336 | // Set the total number of partitions |
337 | |
338 | if (Mg.nparts != NULL) |
339 | {delete[] Mg.nparts;} |
340 | Mg.nparts = new idx_t[1]; |
341 | Mg.nparts[0] = nc; |
342 | |
343 | //! Set option for the graph partitioning (set as default) |
344 | |
345 | if (Mg.options != NULL) |
346 | {delete[] Mg.options;} |
347 | Mg.options = new idx_t[4]; |
348 | Mg.options[0] = 0; |
349 | Mg.options[1] = 0; |
350 | Mg.options[2] = 0; |
351 | Mg.options[3] = 0; |
352 | |
353 | //! adaptiveRepart itr value |
354 | if (Mg.itr != NULL) |
355 | {delete[] Mg.itr;} |
356 | Mg.itr = new real_t[1]; |
357 | Mg.itr[0] = 1000.0; |
358 | |
359 | //! init tpwgts to have balanced vertices and ubvec |
360 | |
361 | if (Mg.tpwgts != NULL) |
362 | {delete[] Mg.tpwgts;} |
363 | if (Mg.ubvec != NULL) |
364 | {delete[] Mg.ubvec;} |
365 | Mg.tpwgts = new real_t[Mg.nparts[0]]; |
366 | Mg.ubvec = new real_t[Mg.nparts[0]]; |
367 | |
368 | for (int s = 0; s < Mg.nparts[0]; s++) |
369 | { |
370 | Mg.tpwgts[s] = 1.0 / Mg.nparts[0]; |
371 | Mg.ubvec[s] = 1.05; |
372 | } |
373 | |
374 | if (Mg.edgecut != NULL) |
375 | {delete[] Mg.edgecut;} |
376 | Mg.edgecut = new idx_t[1]; |
377 | Mg.edgecut[0] = 0; |
378 | |
379 | //! This is used to indicate the numbering scheme that is used for the vtxdist, xadj, adjncy, and part arrays. (0 for C-style, start from 0 index) |
380 | if (Mg.numflag != NULL) |
381 | {delete[] Mg.numflag;} |
382 | Mg.numflag = new idx_t[1]; |
383 | Mg.numflag[0] = 0; |
384 | |
385 | //! This is used to indicate if the graph is weighted. |
386 | if (Mg.wgtflag != NULL) |
387 | {delete[] Mg.wgtflag;} |
388 | Mg.wgtflag = new idx_t[1]; |
389 | Mg.wgtflag[0] = 3; |
390 | } |
391 | |
392 | /*! \brief Decompose the graph |
393 | * |
394 | * \tparam i which property store the decomposition |
395 | * |
396 | * \param sub_g graph to decompose |
397 | * |
398 | */ |
399 | template<unsigned int i> |
400 | void decompose(Graph & sub_g) |
401 | { |
402 | |
403 | // Decompose |
404 | |
405 | ParMETIS_V3_PartKway((idx_t *) sub_g.getVtxdist()->getPointer(), Mg.xadj, Mg.adjncy, Mg.vwgt, Mg.adjwgt, Mg.wgtflag, Mg.numflag, Mg.ncon, Mg.nparts, Mg.tpwgts, Mg.ubvec, Mg.options, Mg.edgecut, Mg.part, &comm); |
406 | /* |
407 | ParMETIS_V3_AdaptiveRepart( (idx_t *) vtxdist.getPointer(), Mg.xadj,Mg.adjncy,Mg.vwgt,Mg.vsize,Mg.adjwgt, Mg.wgtflag, Mg.numflag, |
408 | Mg.ncon, Mg.nparts, Mg.tpwgts, Mg.ubvec, Mg.itr, Mg.options, Mg.edgecut, |
409 | Mg.part, &comm ); |
410 | */ |
411 | |
412 | // For each vertex store the processor that contain the data |
413 | for (size_t id = 0, j = sub_g.firstId(); id < sub_g.getNVertex() && j <= sub_g.lastId(); id++, j++) |
414 | { |
415 | sub_g.vertex(sub_g.nodeById(j)).template get<i>() = Mg.part[id]; |
416 | } |
417 | } |
418 | |
419 | /*! \brief Refine the graph |
420 | * |
421 | * \tparam i which property store the refined decomposition |
422 | * |
423 | * \param sub_g graph to decompose |
424 | * |
425 | */ |
426 | |
427 | template<unsigned int i> |
428 | void refine(Graph & sub_g) |
429 | { |
430 | // Refine |
431 | //ParMETIS_V3_PartKway((idx_t *) sub_g.getVtxdist()->getPointer(), Mg.xadj, Mg.adjncy, Mg.vwgt, Mg.adjwgt, Mg.wgtflag, Mg.numflag, Mg.ncon, Mg.nparts, Mg.tpwgts, Mg.ubvec, Mg.options, Mg.edgecut, Mg.part, &comm); |
432 | ParMETIS_V3_AdaptiveRepart((idx_t *) sub_g.getVtxdist()->getPointer(), Mg.xadj, Mg.adjncy, Mg.vwgt, Mg.vsize, Mg.adjwgt, Mg.wgtflag, Mg.numflag, Mg.ncon, Mg.nparts, Mg.tpwgts, Mg.ubvec, Mg.itr, Mg.options, Mg.edgecut, Mg.part, &comm); |
433 | |
434 | // For each vertex store the processor that contain the data |
435 | for (size_t id = 0, j = sub_g.firstId(); id < sub_g.getNVertex() && j <= sub_g.lastId(); id++, j++) |
436 | { |
437 | sub_g.vertex(sub_g.nodeById(j)).template get<i>() = Mg.part[id]; |
438 | } |
439 | } |
440 | |
441 | /*! \brief Get graph partition vector |
442 | * |
443 | * \return the partition or the assignment of each sub-sub-domain |
444 | * |
445 | */ |
446 | idx_t * getPartition() |
447 | { |
448 | return Mg.part; |
449 | } |
450 | |
451 | /*! \brief Reset graph and reconstruct it |
452 | * |
453 | * \param sub_g graph to decompose |
454 | * |
455 | */ |
456 | void reset(Graph & sub_g) |
457 | { |
458 | // Deallocate the graph structures |
459 | |
460 | if (Mg.xadj != NULL) |
461 | { |
462 | delete[] Mg.xadj; |
463 | } |
464 | |
465 | if (Mg.adjncy != NULL) |
466 | { |
467 | delete[] Mg.adjncy; |
468 | } |
469 | |
470 | if (Mg.vwgt != NULL) |
471 | { |
472 | delete[] Mg.vwgt; |
473 | } |
474 | |
475 | if (Mg.adjwgt != NULL) |
476 | { |
477 | delete[] Mg.adjwgt; |
478 | } |
479 | |
480 | if (Mg.part != NULL) |
481 | { |
482 | delete[] Mg.part; |
483 | } |
484 | |
485 | if (Mg.vsize != NULL) |
486 | { |
487 | delete[] Mg.vsize; |
488 | } |
489 | |
490 | sub_g.deleteGhosts(); |
491 | |
492 | constructAdjList(sub_g); |
493 | } |
494 | } |
495 | ; |
496 | |
497 | #endif |
498 | |