| 1 | /* |
| 2 | * shift_vect_converter.hpp |
| 3 | * |
| 4 | * Created on: Feb 8, 2018 |
| 5 | * Author: i-bird |
| 6 | */ |
| 7 | |
| 8 | #ifndef SRC_DECOMPOSITION_SHIFT_VECT_CONVERTER_HPP_ |
| 9 | #define SRC_DECOMPOSITION_SHIFT_VECT_CONVERTER_HPP_ |
| 10 | |
| 11 | #include "Space/Shape/HyperCube.hpp" |
| 12 | |
| 13 | /*! \brief in case of high dimensions shift vector converter |
| 14 | * |
| 15 | * In case of high-dimensions the number of shift vectors explode, this class |
| 16 | * handle such case |
| 17 | * |
| 18 | */ |
| 19 | template<unsigned int dim, typename T, typename Memory, template<typename> class layout_base> |
| 20 | class shift_vect_converter |
| 21 | { |
| 22 | //! Indicate which indexes are non_periodic |
| 23 | size_t red_shift_v[dim]; |
| 24 | |
| 25 | // indexes |
| 26 | size_t tmp[dim]; |
| 27 | |
| 28 | // Dimension |
| 29 | int dim_r = 0; |
| 30 | |
| 31 | /*! \brief Here we generare the shift vectors for the low dimension case |
| 32 | * |
| 33 | * \param domain box that describe the domain |
| 34 | * |
| 35 | */ |
| 36 | void generateShiftVectors_ld(const Box<dim,T> & domain, size_t (& bc)[dim], |
| 37 | openfpm::vector<Point<dim,T>,Memory,layout_base> & shifts) |
| 38 | { |
| 39 | shifts.resize(openfpm::math::pow(3,dim)); |
| 40 | |
| 41 | HyperCube<dim> hyp; |
| 42 | |
| 43 | for (long int i = dim ; i >= 0 ; i--) |
| 44 | { |
| 45 | std::vector<comb<dim>> cmbs = hyp.getCombinations_R(i); |
| 46 | |
| 47 | for (size_t j = 0 ; j < cmbs.size() ; j++) |
| 48 | { |
| 49 | for (size_t k = 0 ; k < dim ; k++) |
| 50 | { |
| 51 | switch (cmbs[j][k]) |
| 52 | { |
| 53 | case 1: |
| 54 | shifts.get(cmbs[j].lin()).template get<0>()[k] = -(domain.getHigh(k) - domain.getLow(k)); |
| 55 | break; |
| 56 | case 0: |
| 57 | shifts.get(cmbs[j].lin()).template get<0>()[k] = 0; |
| 58 | break; |
| 59 | case -1: |
| 60 | shifts.get(cmbs[j].lin()).template get<0>()[k] = (domain.getHigh(k) - domain.getLow(k)); |
| 61 | break; |
| 62 | } |
| 63 | } |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | /*! \brief Here we generare the shift vectors for the high dimension case |
| 69 | * |
| 70 | * \param domain box that describe the domain |
| 71 | * |
| 72 | */ |
| 73 | void generateShiftVectors_hd(const Box<dim,T> & domain, size_t (& bc)[dim], |
| 74 | openfpm::vector<Point<dim,T>,Memory,layout_base> & shifts) |
| 75 | { |
| 76 | // get the indexes of the free degree of freedom |
| 77 | for (size_t i = 0 ; i < dim ; i++) |
| 78 | { |
| 79 | if (bc[i] == PERIODIC) |
| 80 | { |
| 81 | red_shift_v[dim_r] = i; |
| 82 | dim_r++; |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | HyperCube<dim> hyp; |
| 87 | |
| 88 | // precalculate the nuber of shift vectors |
| 89 | size_t nsv = 0; |
| 90 | for (long int i = dim-1 ; i >= 0 ; i--) |
| 91 | {nsv += hyp.getCombinations_R_bc(i,bc).size();} |
| 92 | shifts.resize(nsv+1); |
| 93 | |
| 94 | for (long int i = dim-1 ; i >= 0 ; i--) |
| 95 | { |
| 96 | std::vector<comb<dim>> cmbs = hyp.getCombinations_R_bc(i,bc); |
| 97 | |
| 98 | for (size_t j = 0 ; j < cmbs.size() ; j++) |
| 99 | { |
| 100 | size_t lin_cmb = linId_hd(cmbs[j]); |
| 101 | |
| 102 | for (size_t k = 0 ; k < dim ; k++) |
| 103 | { |
| 104 | switch (cmbs[j][k]) |
| 105 | { |
| 106 | case 1: |
| 107 | shifts.get(lin_cmb).template get<0>()[k] = -(domain.getHigh(k) - domain.getLow(k)); |
| 108 | break; |
| 109 | case 0: |
| 110 | shifts.get(lin_cmb).template get<0>()[k] = 0; |
| 111 | break; |
| 112 | case -1: |
| 113 | shifts.get(lin_cmb).template get<0>()[k] = (domain.getHigh(k) - domain.getLow(k)); |
| 114 | break; |
| 115 | } |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | public: |
| 122 | |
| 123 | /*! \brief Here we generare the shift vectors for the low dimension case |
| 124 | * |
| 125 | * \param domain box that describe the domain |
| 126 | * |
| 127 | */ |
| 128 | void generateShiftVectors(const Box<dim,T> & domain, size_t (& bc)[dim], |
| 129 | openfpm::vector<Point<dim,T>,Memory,layout_base> & shifts) |
| 130 | { |
| 131 | if (dim < 10) |
| 132 | {generateShiftVectors_ld(domain,bc,shifts);} |
| 133 | else |
| 134 | {generateShiftVectors_hd(domain,bc,shifts);} |
| 135 | } |
| 136 | |
| 137 | /*! \brief Initialize |
| 138 | * |
| 139 | * \param bc boundary conditions |
| 140 | * |
| 141 | */ |
| 142 | void Initialize(size_t (& bc)[dim]) |
| 143 | { |
| 144 | // get the indexes of the free degree of freedom |
| 145 | for (size_t i = 0 ; i < dim ; i++) |
| 146 | { |
| 147 | if (bc[i] == PERIODIC) |
| 148 | { |
| 149 | red_shift_v[dim] = i; |
| 150 | dim_r++; |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | /*! \brief linearize the combination in case of high dimension |
| 156 | * |
| 157 | * \param cmb combination |
| 158 | * |
| 159 | */ |
| 160 | size_t linId_hd(const comb<dim> & cmb) |
| 161 | { |
| 162 | size_t cul = 1; |
| 163 | size_t lin = 0; |
| 164 | for (long int i = 0 ; i < dim_r ; i++) |
| 165 | { |
| 166 | lin += cul*(cmb.c[red_shift_v[i]] + 1); |
| 167 | cul *= 3; |
| 168 | } |
| 169 | |
| 170 | return lin; |
| 171 | } |
| 172 | |
| 173 | /*! \brief linearize the combination in case of low dimensions |
| 174 | * |
| 175 | * \param cmb combination |
| 176 | * |
| 177 | */ |
| 178 | inline size_t linId_ld(const comb<dim> & cmb) |
| 179 | { |
| 180 | return cmb.lin(); |
| 181 | } |
| 182 | |
| 183 | /*! \brief linearize the combination in case of high dimensions |
| 184 | * |
| 185 | * \param cmb combination |
| 186 | * |
| 187 | */ |
| 188 | inline size_t linId(const comb<dim> & cmb) |
| 189 | { |
| 190 | if (dim < 10) |
| 191 | {return linId_ld(cmb);} |
| 192 | |
| 193 | return linId_hd(cmb); |
| 194 | } |
| 195 | |
| 196 | }; |
| 197 | |
| 198 | |
| 199 | #endif /* SRC_DECOMPOSITION_SHIFT_VECT_CONVERTER_HPP_ */ |
| 200 | |