| 1 | #ifndef HYPERCUBE_HPP |
| 2 | #define HYPERCUBE_HPP |
| 3 | |
| 4 | #include "Grid/grid_sm.hpp" |
| 5 | #include "Grid/comb.hpp" |
| 6 | #include "util/mathutil.hpp" |
| 7 | |
| 8 | template<unsigned int dim, unsigned int subdim> class SubHyperCube; |
| 9 | |
| 10 | /*! \brief output stream overload for printing |
| 11 | * |
| 12 | * \param str ostream |
| 13 | * \param c combination to print |
| 14 | * |
| 15 | */ |
| 16 | template<unsigned int dim> std::ostream& operator<<(std::ostream& str, const comb<dim> & c) |
| 17 | { |
| 18 | // print the combination of ostream |
| 19 | for (size_t i = 0 ; i < dim-1 ; i++) |
| 20 | { |
| 21 | /* coverity[dead_error_line] */ |
| 22 | str << c.c[i] << ";" ; |
| 23 | } |
| 24 | |
| 25 | str << c.c[dim-1]; |
| 26 | |
| 27 | return str; |
| 28 | } |
| 29 | |
| 30 | /*! \brief This class calculate elements of the hyper-cube |
| 31 | * |
| 32 | * This class give you a set of utility functions for the hyper-cube like getting |
| 33 | * number of faces, number of edge, number of vertex, or in general number of elements |
| 34 | * of dimension d, position of each element |
| 35 | * |
| 36 | * * 0d Hyper-cube vertex |
| 37 | * * 1d Hypercube segment |
| 38 | * * 2d Hypercube square |
| 39 | * * 3d Hypercube Cube |
| 40 | * ... |
| 41 | * |
| 42 | * \tparam dim dimensionality of the Hyper-cube |
| 43 | * |
| 44 | * ### Get vertex and edge on a line |
| 45 | * \snippet HyperCube_unit_test.hpp Get vertex and edge on a line |
| 46 | * ### Get vertex edge and surfaces of a square |
| 47 | * \snippet HyperCube_unit_test.hpp Get vertex edge and surfaces of a square |
| 48 | * ### Get vertex edge surfaces and volumes of a cube |
| 49 | * \snippet HyperCube_unit_test.hpp Get vertex edge surfaces and volumes of a cube |
| 50 | * |
| 51 | * hyper-cube define only the features of an N-dimensional hyper-cube, does not define |
| 52 | * where is is located and its size, use Box for that purpose |
| 53 | * |
| 54 | */ |
| 55 | |
| 56 | template<unsigned int dim> |
| 57 | class HyperCube |
| 58 | { |
| 59 | public: |
| 60 | |
| 61 | /*! \brief Get the number of Elements of dimension d |
| 62 | * |
| 63 | * \param d dimensionality of the element |
| 64 | * \return the number of elements of dimension d |
| 65 | * |
| 66 | */ |
| 67 | static size_t getNumberOfElements_R(size_t d) |
| 68 | { |
| 69 | // The formula to calculate the number of element of size d is given by |
| 70 | // |
| 71 | // 2^(dim-d) * C(dim,d) with C(dim,d) = dim!/(d!(dim-d)!) |
| 72 | |
| 73 | return pow(2,dim-d) * openfpm::math::C(dim,d); |
| 74 | } |
| 75 | |
| 76 | /*! \brief Get the sum of the number of elements from d to d_t (included) |
| 77 | * |
| 78 | * \param d_t |
| 79 | * \return the sum of the number of elements from d to d_t |
| 80 | * |
| 81 | */ |
| 82 | |
| 83 | static size_t getNumberOfElementsTo_R(size_t d_t) |
| 84 | { |
| 85 | size_t N_ele = 0; |
| 86 | |
| 87 | for (size_t i = 0 ; i <= d_t ; i++) |
| 88 | N_ele += getNumberOfElements_R(i); |
| 89 | |
| 90 | return N_ele; |
| 91 | } |
| 92 | |
| 93 | /*! brief Calculate the position (combinations) of all the elements of size d |
| 94 | * |
| 95 | * \param d dimensionality of the object returned in the combinations |
| 96 | * \return all the combinations |
| 97 | * |
| 98 | */ |
| 99 | |
| 100 | static std::vector<comb<dim>> getCombinations_R(size_t d) |
| 101 | { |
| 102 | #ifdef SE_CLASS1 |
| 103 | if (d > dim) |
| 104 | std::cerr << "Error: " << __FILE__ << ":" << __LINE__ << " " << d << " must be smaller than " << "\n" ; |
| 105 | #endif |
| 106 | |
| 107 | // Create an Iterator_g_const |
| 108 | // And a vector that store all the combination |
| 109 | |
| 110 | std::vector<comb<dim>> v; |
| 111 | Iterator_g_const it(dim-d,dim); |
| 112 | |
| 113 | // for each non-zero elements |
| 114 | // basically the key will store the position of the |
| 115 | // non zero elements, while BinPermutations will |
| 116 | // fill the array of all the permutations |
| 117 | // |
| 118 | |
| 119 | while (it.isNext()) |
| 120 | { |
| 121 | grid_key_dx_r & key = it.get(); |
| 122 | |
| 123 | // Calculate the permutation |
| 124 | |
| 125 | BinPermutations(key,v); |
| 126 | ++it; |
| 127 | } |
| 128 | |
| 129 | // case when d == dim |
| 130 | |
| 131 | if (d == dim) |
| 132 | { |
| 133 | comb<dim> c; |
| 134 | c.zero(); |
| 135 | |
| 136 | v.push_back(c); |
| 137 | } |
| 138 | |
| 139 | // return the combinations |
| 140 | |
| 141 | return v; |
| 142 | } |
| 143 | |
| 144 | /*! brief Calculate the position (combinations) of all the elements of size d |
| 145 | * |
| 146 | * \param d dimensionality of the object returned in the combinations |
| 147 | * \return all the combinations |
| 148 | * |
| 149 | */ |
| 150 | |
| 151 | static std::vector<comb<dim>> getCombinations_R_bc(size_t d, const size_t (& bc)[dim]) |
| 152 | { |
| 153 | #ifdef SE_CLASS1 |
| 154 | if (d > dim) |
| 155 | std::cerr << "Error: " << __FILE__ << ":" << __LINE__ << " " << d << " must be smaller than " << "\n" ; |
| 156 | #endif |
| 157 | |
| 158 | size_t dg[dim]; |
| 159 | |
| 160 | size_t k = 0; |
| 161 | // get the indexes of the free degree of freedom |
| 162 | for (size_t i = 0 ; i < dim ; i++) |
| 163 | { |
| 164 | if (bc[i] == PERIODIC) |
| 165 | { |
| 166 | dg[k] = i; |
| 167 | k++; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | // Create an Iterator_g_const |
| 172 | // And a vector that store all the combination |
| 173 | |
| 174 | std::vector<comb<dim>> v; |
| 175 | Iterator_g_const it(k-(d-(dim - k)),k); |
| 176 | |
| 177 | // for each non-zero elements |
| 178 | // basically the key will store the position of the |
| 179 | // non zero elements, while BinPermutations will |
| 180 | // fill the array of all the permutations |
| 181 | // |
| 182 | |
| 183 | while (it.isNext()) |
| 184 | { |
| 185 | grid_key_dx_r key = it.get(); |
| 186 | |
| 187 | // Now we adjust the non zero position |
| 188 | |
| 189 | for (size_t i = 0 ; i < key.getDim() ; i++) |
| 190 | {key.set_d(i,dg[key.get(i)]);} |
| 191 | |
| 192 | // Calculate the permutation |
| 193 | |
| 194 | BinPermutations(key,v); |
| 195 | ++it; |
| 196 | } |
| 197 | |
| 198 | // case when d == dim |
| 199 | |
| 200 | if (d == dim) |
| 201 | { |
| 202 | comb<dim> c; |
| 203 | c.zero(); |
| 204 | |
| 205 | v.push_back(c); |
| 206 | } |
| 207 | |
| 208 | // return the combinations |
| 209 | |
| 210 | return v; |
| 211 | } |
| 212 | |
| 213 | /*! \brief Binary permutations |
| 214 | * |
| 215 | * Fill v with all the possible binary permutations |
| 216 | * it produce 2^(pos.getDim()) Permutations |
| 217 | * |
| 218 | * Example |
| 219 | * |
| 220 | * if getDim() is 2 |
| 221 | * |
| 222 | * it produce 4 configuration |
| 223 | * |
| 224 | * (1,1) (1,-1) (-1,1) (-1,-1) |
| 225 | * |
| 226 | * and fill the number in the position indicated by Iterator_g_const |
| 227 | * |
| 228 | * \param pos slots inside comb to fill with all permutations |
| 229 | * \param v vector to fill with the permutations |
| 230 | * |
| 231 | */ |
| 232 | static void BinPermutations(grid_key_dx_r & pos, std::vector<comb<dim>> & v) |
| 233 | { |
| 234 | size_t p_stop = pow(2,pos.getDim()); |
| 235 | for (size_t p = 0 ; p < p_stop ; p++) |
| 236 | { |
| 237 | // Create a new permutation |
| 238 | struct comb<dim> c; |
| 239 | |
| 240 | // zero the combination |
| 241 | c.zero(); |
| 242 | |
| 243 | // the bit of p give the permutations 0 mean bottom 1 mean up |
| 244 | // Fill the combination based on the bit of p |
| 245 | |
| 246 | for (size_t k = 0 ; k < pos.getDim() ; k++) |
| 247 | { |
| 248 | // bit of p |
| 249 | bool bit = (p >> k) & 0x01; |
| 250 | |
| 251 | // Fill the combination |
| 252 | c.c[pos.get(k)] = (bit == 0)? 1 : -1; |
| 253 | } |
| 254 | |
| 255 | // save the combination |
| 256 | |
| 257 | v.push_back(c); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /*! \brief Binary permutations |
| 262 | * |
| 263 | * Fill v with all the possible binary permutations |
| 264 | * it produce 2^(pos.getDim()) Permutations |
| 265 | * |
| 266 | * Example |
| 267 | * |
| 268 | * if getDim() is 2 |
| 269 | * |
| 270 | * it produce 4 configuration |
| 271 | * |
| 272 | * (1,1) (1,-0) (0,1) (0,0) |
| 273 | * |
| 274 | * from another prospective given |
| 275 | * |
| 276 | * \verbatim |
| 277 | * |
| 278 | * +----#----+ |
| 279 | * | | |
| 280 | * | | |
| 281 | * # * # |
| 282 | * | | |
| 283 | * | | |
| 284 | * +----#----+ |
| 285 | * |
| 286 | * \endverbatim |
| 287 | * |
| 288 | * combination in the center (*) the down-left vertex (+). down and left edge (#) |
| 289 | * |
| 290 | * \param v vector to fill with the permutations |
| 291 | * |
| 292 | */ |
| 293 | static void BinPermutationsSt(std::vector<comb<dim>> & v) |
| 294 | { |
| 295 | size_t p_stop = pow(2,dim); |
| 296 | for (size_t p = 0 ; p < p_stop ; p++) |
| 297 | { |
| 298 | // Create a new permutation |
| 299 | struct comb<dim> c; |
| 300 | |
| 301 | // zero the combination |
| 302 | c.zero(); |
| 303 | |
| 304 | // the bit of p give the permutations 0 mean bottom 1 mean up |
| 305 | // Fill the combination based on the bit of p |
| 306 | |
| 307 | for (size_t k = 0 ; k < dim ; k++) |
| 308 | { |
| 309 | // bit of p |
| 310 | bool bit = (p >> k) & 0x01; |
| 311 | |
| 312 | // Fill the combination |
| 313 | c.c[k] = (bit == 0)? 0 : -1; |
| 314 | } |
| 315 | |
| 316 | // save the combination |
| 317 | |
| 318 | v.push_back(c); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /*! \brief Linearize the permutation given by BinPermutationSt |
| 323 | * |
| 324 | * Suppose BinPermutation return the following combination |
| 325 | * |
| 326 | * (-1,-1) (-1,0) (0,-1) (0,0) |
| 327 | * |
| 328 | * giving (0,-1) it return 2 |
| 329 | * |
| 330 | * \param c combination to linearize |
| 331 | * |
| 332 | * \return the linearized permutation |
| 333 | * |
| 334 | * \see BinPermitationSt |
| 335 | * |
| 336 | */ |
| 337 | static size_t LinPerm(comb<dim> & c) |
| 338 | { |
| 339 | size_t id = 0; |
| 340 | |
| 341 | for (size_t i = 0 ; i < dim ; i++) |
| 342 | { |
| 343 | if (c.c[i] == -1) |
| 344 | {id = id | (1 << i);} |
| 345 | } |
| 346 | |
| 347 | return id; |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | static SubHyperCube<dim,dim-1> getSubHyperCube(int d) |
| 352 | { |
| 353 | SubHyperCube<dim,dim-1> sub; |
| 354 | |
| 355 | return sub; |
| 356 | }*/ |
| 357 | |
| 358 | /** \brief Linearize the combination |
| 359 | * |
| 360 | * It map the combination into a linear id, in particular given the vector of combinations |
| 361 | * with get getCombinations_R, given the combination it give where is located in the vector |
| 362 | * |
| 363 | * \param c given combination |
| 364 | * \return the linearized combination |
| 365 | * |
| 366 | */ |
| 367 | static size_t LinId(comb<dim> & c) |
| 368 | { |
| 369 | // calculate the numbers of non-zero |
| 370 | size_t d = 0; |
| 371 | |
| 372 | size_t pos_n_zero[dim]; |
| 373 | |
| 374 | for (size_t i = 0 ; i < dim ; i++) |
| 375 | { |
| 376 | if (c.c[i] != 0) |
| 377 | {d++;} |
| 378 | } |
| 379 | |
| 380 | // Get the position of the non-zero |
| 381 | size_t pn_zero = 0; |
| 382 | for (size_t i = 0 ; i < dim ; i++) |
| 383 | { |
| 384 | if (c.c[i] != 0) |
| 385 | { |
| 386 | pos_n_zero[d-pn_zero-1] = i; |
| 387 | pn_zero++; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | size_t lin_id = 0; |
| 392 | |
| 393 | // Cumulative value |
| 394 | long int val = 0; |
| 395 | long int cum_val = 0; |
| 396 | for(long int i = d - 1; i >= 0 ; i--) |
| 397 | { |
| 398 | // check the out-of-bound, outside is assumed to be -1 so (- pos_n_zero[i+1] - 1) = 0 |
| 399 | if (i+1 < (long int)d) |
| 400 | { |
| 401 | /* coverity[dead_error_line] */ |
| 402 | val = pos_n_zero[i] - pos_n_zero[i+1] - 1; |
| 403 | } |
| 404 | else |
| 405 | { |
| 406 | /* coverty[uninit_use] */ |
| 407 | val = pos_n_zero[i]; |
| 408 | } |
| 409 | |
| 410 | for (long int j = 0 ; j < (long int)val; j++) |
| 411 | { |
| 412 | // C is not safe, check the limit |
| 413 | /* coverity[dead_error_line] */ |
| 414 | if (((long int)dim)-cum_val-j-1 >= 0 && i > 0 && ((long int)dim)-cum_val-j >= i) |
| 415 | lin_id += openfpm::math::C(dim-cum_val-j-1,i); |
| 416 | else |
| 417 | lin_id += 1; |
| 418 | } |
| 419 | |
| 420 | cum_val += (val + 1); |
| 421 | } |
| 422 | |
| 423 | // multiply for the permutation |
| 424 | lin_id *= pow(2,d); |
| 425 | |
| 426 | // calculate the permutation position |
| 427 | size_t id = 0; |
| 428 | |
| 429 | for (size_t i = 0 ; i < d ; i++) |
| 430 | { |
| 431 | if (c.c[pos_n_zero[i]] == -1) |
| 432 | {id = id | (1 << i);} |
| 433 | } |
| 434 | |
| 435 | // return the correct id |
| 436 | |
| 437 | return lin_id + id; |
| 438 | } |
| 439 | |
| 440 | /** \brief isPositive return if the combination d is a positive or a negative |
| 441 | * |
| 442 | * For an hyper-cube of dimension dim we have 2*dim faces combinations half on positive direction |
| 443 | * half on negative direction, the function check |
| 444 | * if the d combination is negative or positive |
| 445 | * |
| 446 | * \param d |
| 447 | * |
| 448 | * \return true if the combination is in positive direction |
| 449 | * |
| 450 | */ |
| 451 | static bool isPositive(size_t d) |
| 452 | { |
| 453 | return (d % 2) == 0; |
| 454 | } |
| 455 | |
| 456 | /*! \brief return the combination of the positive face on direction d |
| 457 | * |
| 458 | * \param d direction |
| 459 | * |
| 460 | * \return id of the combination |
| 461 | * |
| 462 | */ |
| 463 | static int positiveFace(int d) |
| 464 | { |
| 465 | return d * 2; |
| 466 | } |
| 467 | |
| 468 | /*! \brief Return the combination of the negative face on direction d |
| 469 | * |
| 470 | * \param d direction |
| 471 | * |
| 472 | * \return id of the combination |
| 473 | * |
| 474 | */ |
| 475 | static int negativeFace(int d) |
| 476 | { |
| 477 | return d * 2 + 1; |
| 478 | } |
| 479 | }; |
| 480 | |
| 481 | /*! \brief This represent a sub-hyper-cube of an hyper-cube like a face or an edge of a cube |
| 482 | * |
| 483 | * It give a set of utility function to work with sub-hyper-cubes like the hyper-cube |
| 484 | * |
| 485 | * \tparam dimensionality of the hyper-cube |
| 486 | * \tparam dimensionality of the sub-hyper-cube |
| 487 | * |
| 488 | * ### First we get the surfaces of an hyper-cube |
| 489 | * \snippet HyperCube_unit_test.hpp Getting the surfaces of the cube |
| 490 | * ### Getting the vertices of one particular surface of the cube |
| 491 | * \snippet HyperCube_unit_test.hpp Getting the vertices of one surface of the cube |
| 492 | * ### Getting the edges of one particular surface of the cube |
| 493 | * \snippet HyperCube_unit_test.hpp Getting the edges of the surfaces of the cube |
| 494 | * |
| 495 | */ |
| 496 | |
| 497 | template<unsigned int dim, unsigned int subdim> |
| 498 | class SubHyperCube : public HyperCube<subdim> |
| 499 | { |
| 500 | public: |
| 501 | |
| 502 | /*! brief Calculate the position (combinations) of all the elements of size d in the sub-hyper-cube |
| 503 | * |
| 504 | * \param c identify the position of the sub-hyper-cube in the hypercube |
| 505 | * \param d dimensionality of the objects |
| 506 | * \return all the combinations |
| 507 | * |
| 508 | */ |
| 509 | static std::vector<comb<dim>> getCombinations_R(comb<dim> c, int d) |
| 510 | { |
| 511 | #ifdef DEBUG |
| 512 | if (c.n_zero() < d) |
| 513 | { |
| 514 | std::cerr << "Error SubHyperCube: " << __FILE__ << " " << __LINE__ << " the hyper-cube selected must have dimensionality bigger than the dimensionality of the requested combinations, or the number of zero in c must me bigger than d" << "\n" ; |
| 515 | } |
| 516 | #endif |
| 517 | |
| 518 | // if sub-dim == 0 return c |
| 519 | |
| 520 | if (subdim == 0) |
| 521 | { |
| 522 | std::vector<comb<dim>> vc; |
| 523 | vc.push_back(c); |
| 524 | |
| 525 | return vc; |
| 526 | } |
| 527 | |
| 528 | // Create an Iterator_g_const |
| 529 | // And a vector that store all the combination |
| 530 | |
| 531 | std::vector<comb<subdim>> v = HyperCube<subdim>::getCombinations_R(d); |
| 532 | |
| 533 | // Create new combinations |
| 534 | std::vector<comb<dim>> vc(v.size()); |
| 535 | |
| 536 | // for each combination |
| 537 | for (size_t i = 0 ; i < v.size() ; i++) |
| 538 | { |
| 539 | // sub j counter |
| 540 | int sub_j = 0; |
| 541 | // for each zero (direction spanned by the sub-hyper-cube) |
| 542 | for (size_t j = 0 ; j < dim ; j++) |
| 543 | { |
| 544 | if (c.c[j] == 0) |
| 545 | { |
| 546 | // take the combination from the sub-hyper-cube |
| 547 | vc[i].c[j] = v[i].c[sub_j]; |
| 548 | sub_j++; |
| 549 | } |
| 550 | else |
| 551 | { |
| 552 | // take the combination from the hyper-cube position |
| 553 | vc[i].c[j] = c.c[j]; |
| 554 | } |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | // return the combinations |
| 559 | return vc; |
| 560 | } |
| 561 | }; |
| 562 | |
| 563 | #endif |
| 564 | |