| 1 | // random number generation -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2009-2019 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** |
| 26 | * @file bits/random.h |
| 27 | * This is an internal header file, included by other library headers. |
| 28 | * Do not attempt to use it directly. @headername{random} |
| 29 | */ |
| 30 | |
| 31 | #ifndef _RANDOM_H |
| 32 | #define _RANDOM_H 1 |
| 33 | |
| 34 | #include <vector> |
| 35 | #include <bits/uniform_int_dist.h> |
| 36 | |
| 37 | namespace std _GLIBCXX_VISIBILITY(default) |
| 38 | { |
| 39 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 40 | |
| 41 | // [26.4] Random number generation |
| 42 | |
| 43 | /** |
| 44 | * @defgroup random Random Number Generation |
| 45 | * @ingroup numerics |
| 46 | * |
| 47 | * A facility for generating random numbers on selected distributions. |
| 48 | * @{ |
| 49 | */ |
| 50 | |
| 51 | /** |
| 52 | * @brief A function template for converting the output of a (integral) |
| 53 | * uniform random number generator to a floatng point result in the range |
| 54 | * [0-1). |
| 55 | */ |
| 56 | template<typename _RealType, size_t __bits, |
| 57 | typename _UniformRandomNumberGenerator> |
| 58 | _RealType |
| 59 | generate_canonical(_UniformRandomNumberGenerator& __g); |
| 60 | |
| 61 | /* |
| 62 | * Implementation-space details. |
| 63 | */ |
| 64 | namespace __detail |
| 65 | { |
| 66 | template<typename _UIntType, size_t __w, |
| 67 | bool = __w < static_cast<size_t> |
| 68 | (std::numeric_limits<_UIntType>::digits)> |
| 69 | struct _Shift |
| 70 | { static const _UIntType __value = 0; }; |
| 71 | |
| 72 | template<typename _UIntType, size_t __w> |
| 73 | struct _Shift<_UIntType, __w, true> |
| 74 | { static const _UIntType __value = _UIntType(1) << __w; }; |
| 75 | |
| 76 | template<int __s, |
| 77 | int __which = ((__s <= __CHAR_BIT__ * sizeof (int)) |
| 78 | + (__s <= __CHAR_BIT__ * sizeof (long)) |
| 79 | + (__s <= __CHAR_BIT__ * sizeof (long long)) |
| 80 | /* assume long long no bigger than __int128 */ |
| 81 | + (__s <= 128))> |
| 82 | struct _Select_uint_least_t |
| 83 | { |
| 84 | static_assert(__which < 0, /* needs to be dependent */ |
| 85 | "sorry, would be too much trouble for a slow result" ); |
| 86 | }; |
| 87 | |
| 88 | template<int __s> |
| 89 | struct _Select_uint_least_t<__s, 4> |
| 90 | { typedef unsigned int type; }; |
| 91 | |
| 92 | template<int __s> |
| 93 | struct _Select_uint_least_t<__s, 3> |
| 94 | { typedef unsigned long type; }; |
| 95 | |
| 96 | template<int __s> |
| 97 | struct _Select_uint_least_t<__s, 2> |
| 98 | { typedef unsigned long long type; }; |
| 99 | |
| 100 | #ifdef _GLIBCXX_USE_INT128 |
| 101 | template<int __s> |
| 102 | struct _Select_uint_least_t<__s, 1> |
| 103 | { typedef unsigned __int128 type; }; |
| 104 | #endif |
| 105 | |
| 106 | // Assume a != 0, a < m, c < m, x < m. |
| 107 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, |
| 108 | bool __big_enough = (!(__m & (__m - 1)) |
| 109 | || (_Tp(-1) - __c) / __a >= __m - 1), |
| 110 | bool __schrage_ok = __m % __a < __m / __a> |
| 111 | struct _Mod |
| 112 | { |
| 113 | typedef typename _Select_uint_least_t<std::__lg(__a) |
| 114 | + std::__lg(__m) + 2>::type _Tp2; |
| 115 | static _Tp |
| 116 | __calc(_Tp __x) |
| 117 | { return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); } |
| 118 | }; |
| 119 | |
| 120 | // Schrage. |
| 121 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
| 122 | struct _Mod<_Tp, __m, __a, __c, false, true> |
| 123 | { |
| 124 | static _Tp |
| 125 | __calc(_Tp __x); |
| 126 | }; |
| 127 | |
| 128 | // Special cases: |
| 129 | // - for m == 2^n or m == 0, unsigned integer overflow is safe. |
| 130 | // - a * (m - 1) + c fits in _Tp, there is no overflow. |
| 131 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s> |
| 132 | struct _Mod<_Tp, __m, __a, __c, true, __s> |
| 133 | { |
| 134 | static _Tp |
| 135 | __calc(_Tp __x) |
| 136 | { |
| 137 | _Tp __res = __a * __x + __c; |
| 138 | if (__m) |
| 139 | __res %= __m; |
| 140 | return __res; |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0> |
| 145 | inline _Tp |
| 146 | __mod(_Tp __x) |
| 147 | { return _Mod<_Tp, __m, __a, __c>::__calc(__x); } |
| 148 | |
| 149 | /* |
| 150 | * An adaptor class for converting the output of any Generator into |
| 151 | * the input for a specific Distribution. |
| 152 | */ |
| 153 | template<typename _Engine, typename _DInputType> |
| 154 | struct _Adaptor |
| 155 | { |
| 156 | static_assert(std::is_floating_point<_DInputType>::value, |
| 157 | "template argument must be a floating point type" ); |
| 158 | |
| 159 | public: |
| 160 | _Adaptor(_Engine& __g) |
| 161 | : _M_g(__g) { } |
| 162 | |
| 163 | _DInputType |
| 164 | min() const |
| 165 | { return _DInputType(0); } |
| 166 | |
| 167 | _DInputType |
| 168 | max() const |
| 169 | { return _DInputType(1); } |
| 170 | |
| 171 | /* |
| 172 | * Converts a value generated by the adapted random number generator |
| 173 | * into a value in the input domain for the dependent random number |
| 174 | * distribution. |
| 175 | */ |
| 176 | _DInputType |
| 177 | operator()() |
| 178 | { |
| 179 | return std::generate_canonical<_DInputType, |
| 180 | std::numeric_limits<_DInputType>::digits, |
| 181 | _Engine>(_M_g); |
| 182 | } |
| 183 | |
| 184 | private: |
| 185 | _Engine& _M_g; |
| 186 | }; |
| 187 | |
| 188 | template<typename _Sseq> |
| 189 | using __seed_seq_generate_t = decltype( |
| 190 | std::declval<_Sseq&>().generate(std::declval<uint_least32_t*>(), |
| 191 | std::declval<uint_least32_t*>())); |
| 192 | |
| 193 | // Detect whether _Sseq is a valid seed sequence for |
| 194 | // a random number engine _Engine with result type _Res. |
| 195 | template<typename _Sseq, typename _Engine, typename _Res, |
| 196 | typename _GenerateCheck = __seed_seq_generate_t<_Sseq>> |
| 197 | using __is_seed_seq = __and_< |
| 198 | __not_<is_same<__remove_cvref_t<_Sseq>, _Engine>>, |
| 199 | is_unsigned<typename _Sseq::result_type>, |
| 200 | __not_<is_convertible<_Sseq, _Res>> |
| 201 | >; |
| 202 | |
| 203 | } // namespace __detail |
| 204 | |
| 205 | /** |
| 206 | * @addtogroup random_generators Random Number Generators |
| 207 | * @ingroup random |
| 208 | * |
| 209 | * These classes define objects which provide random or pseudorandom |
| 210 | * numbers, either from a discrete or a continuous interval. The |
| 211 | * random number generator supplied as a part of this library are |
| 212 | * all uniform random number generators which provide a sequence of |
| 213 | * random number uniformly distributed over their range. |
| 214 | * |
| 215 | * A number generator is a function object with an operator() that |
| 216 | * takes zero arguments and returns a number. |
| 217 | * |
| 218 | * A compliant random number generator must satisfy the following |
| 219 | * requirements. <table border=1 cellpadding=10 cellspacing=0> |
| 220 | * <caption align=top>Random Number Generator Requirements</caption> |
| 221 | * <tr><td>To be documented.</td></tr> </table> |
| 222 | * |
| 223 | * @{ |
| 224 | */ |
| 225 | |
| 226 | /** |
| 227 | * @brief A model of a linear congruential random number generator. |
| 228 | * |
| 229 | * A random number generator that produces pseudorandom numbers via |
| 230 | * linear function: |
| 231 | * @f[ |
| 232 | * x_{i+1}\leftarrow(ax_{i} + c) \bmod m |
| 233 | * @f] |
| 234 | * |
| 235 | * The template parameter @p _UIntType must be an unsigned integral type |
| 236 | * large enough to store values up to (__m-1). If the template parameter |
| 237 | * @p __m is 0, the modulus @p __m used is |
| 238 | * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template |
| 239 | * parameters @p __a and @p __c must be less than @p __m. |
| 240 | * |
| 241 | * The size of the state is @f$1@f$. |
| 242 | */ |
| 243 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 244 | class linear_congruential_engine |
| 245 | { |
| 246 | static_assert(std::is_unsigned<_UIntType>::value, |
| 247 | "result_type must be an unsigned integral type" ); |
| 248 | static_assert(__m == 0u || (__a < __m && __c < __m), |
| 249 | "template argument substituting __m out of bounds" ); |
| 250 | |
| 251 | template<typename _Sseq> |
| 252 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
| 253 | _Sseq, linear_congruential_engine, _UIntType>::value>::type; |
| 254 | |
| 255 | public: |
| 256 | /** The type of the generated random value. */ |
| 257 | typedef _UIntType result_type; |
| 258 | |
| 259 | /** The multiplier. */ |
| 260 | static constexpr result_type multiplier = __a; |
| 261 | /** An increment. */ |
| 262 | static constexpr result_type increment = __c; |
| 263 | /** The modulus. */ |
| 264 | static constexpr result_type modulus = __m; |
| 265 | static constexpr result_type default_seed = 1u; |
| 266 | |
| 267 | /** |
| 268 | * @brief Constructs a %linear_congruential_engine random number |
| 269 | * generator engine with seed 1. |
| 270 | */ |
| 271 | linear_congruential_engine() : linear_congruential_engine(default_seed) |
| 272 | { } |
| 273 | |
| 274 | /** |
| 275 | * @brief Constructs a %linear_congruential_engine random number |
| 276 | * generator engine with seed @p __s. The default seed value |
| 277 | * is 1. |
| 278 | * |
| 279 | * @param __s The initial seed value. |
| 280 | */ |
| 281 | explicit |
| 282 | linear_congruential_engine(result_type __s) |
| 283 | { seed(__s); } |
| 284 | |
| 285 | /** |
| 286 | * @brief Constructs a %linear_congruential_engine random number |
| 287 | * generator engine seeded from the seed sequence @p __q. |
| 288 | * |
| 289 | * @param __q the seed sequence. |
| 290 | */ |
| 291 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 292 | explicit |
| 293 | linear_congruential_engine(_Sseq& __q) |
| 294 | { seed(__q); } |
| 295 | |
| 296 | /** |
| 297 | * @brief Reseeds the %linear_congruential_engine random number generator |
| 298 | * engine sequence to the seed @p __s. |
| 299 | * |
| 300 | * @param __s The new seed. |
| 301 | */ |
| 302 | void |
| 303 | seed(result_type __s = default_seed); |
| 304 | |
| 305 | /** |
| 306 | * @brief Reseeds the %linear_congruential_engine random number generator |
| 307 | * engine |
| 308 | * sequence using values from the seed sequence @p __q. |
| 309 | * |
| 310 | * @param __q the seed sequence. |
| 311 | */ |
| 312 | template<typename _Sseq> |
| 313 | _If_seed_seq<_Sseq> |
| 314 | seed(_Sseq& __q); |
| 315 | |
| 316 | /** |
| 317 | * @brief Gets the smallest possible value in the output range. |
| 318 | * |
| 319 | * The minimum depends on the @p __c parameter: if it is zero, the |
| 320 | * minimum generated must be > 0, otherwise 0 is allowed. |
| 321 | */ |
| 322 | static constexpr result_type |
| 323 | min() |
| 324 | { return __c == 0u ? 1u : 0u; } |
| 325 | |
| 326 | /** |
| 327 | * @brief Gets the largest possible value in the output range. |
| 328 | */ |
| 329 | static constexpr result_type |
| 330 | max() |
| 331 | { return __m - 1u; } |
| 332 | |
| 333 | /** |
| 334 | * @brief Discard a sequence of random numbers. |
| 335 | */ |
| 336 | void |
| 337 | discard(unsigned long long __z) |
| 338 | { |
| 339 | for (; __z != 0ULL; --__z) |
| 340 | (*this)(); |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * @brief Gets the next random number in the sequence. |
| 345 | */ |
| 346 | result_type |
| 347 | operator()() |
| 348 | { |
| 349 | _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x); |
| 350 | return _M_x; |
| 351 | } |
| 352 | |
| 353 | /** |
| 354 | * @brief Compares two linear congruential random number generator |
| 355 | * objects of the same type for equality. |
| 356 | * |
| 357 | * @param __lhs A linear congruential random number generator object. |
| 358 | * @param __rhs Another linear congruential random number generator |
| 359 | * object. |
| 360 | * |
| 361 | * @returns true if the infinite sequences of generated values |
| 362 | * would be equal, false otherwise. |
| 363 | */ |
| 364 | friend bool |
| 365 | operator==(const linear_congruential_engine& __lhs, |
| 366 | const linear_congruential_engine& __rhs) |
| 367 | { return __lhs._M_x == __rhs._M_x; } |
| 368 | |
| 369 | /** |
| 370 | * @brief Writes the textual representation of the state x(i) of x to |
| 371 | * @p __os. |
| 372 | * |
| 373 | * @param __os The output stream. |
| 374 | * @param __lcr A % linear_congruential_engine random number generator. |
| 375 | * @returns __os. |
| 376 | */ |
| 377 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
| 378 | _UIntType1 __m1, typename _CharT, typename _Traits> |
| 379 | friend std::basic_ostream<_CharT, _Traits>& |
| 380 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 381 | const std::linear_congruential_engine<_UIntType1, |
| 382 | __a1, __c1, __m1>& __lcr); |
| 383 | |
| 384 | /** |
| 385 | * @brief Sets the state of the engine by reading its textual |
| 386 | * representation from @p __is. |
| 387 | * |
| 388 | * The textual representation must have been previously written using |
| 389 | * an output stream whose imbued locale and whose type's template |
| 390 | * specialization arguments _CharT and _Traits were the same as those |
| 391 | * of @p __is. |
| 392 | * |
| 393 | * @param __is The input stream. |
| 394 | * @param __lcr A % linear_congruential_engine random number generator. |
| 395 | * @returns __is. |
| 396 | */ |
| 397 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
| 398 | _UIntType1 __m1, typename _CharT, typename _Traits> |
| 399 | friend std::basic_istream<_CharT, _Traits>& |
| 400 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 401 | std::linear_congruential_engine<_UIntType1, __a1, |
| 402 | __c1, __m1>& __lcr); |
| 403 | |
| 404 | private: |
| 405 | _UIntType _M_x; |
| 406 | }; |
| 407 | |
| 408 | /** |
| 409 | * @brief Compares two linear congruential random number generator |
| 410 | * objects of the same type for inequality. |
| 411 | * |
| 412 | * @param __lhs A linear congruential random number generator object. |
| 413 | * @param __rhs Another linear congruential random number generator |
| 414 | * object. |
| 415 | * |
| 416 | * @returns true if the infinite sequences of generated values |
| 417 | * would be different, false otherwise. |
| 418 | */ |
| 419 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 420 | inline bool |
| 421 | operator!=(const std::linear_congruential_engine<_UIntType, __a, |
| 422 | __c, __m>& __lhs, |
| 423 | const std::linear_congruential_engine<_UIntType, __a, |
| 424 | __c, __m>& __rhs) |
| 425 | { return !(__lhs == __rhs); } |
| 426 | |
| 427 | |
| 428 | /** |
| 429 | * A generalized feedback shift register discrete random number generator. |
| 430 | * |
| 431 | * This algorithm avoids multiplication and division and is designed to be |
| 432 | * friendly to a pipelined architecture. If the parameters are chosen |
| 433 | * correctly, this generator will produce numbers with a very long period and |
| 434 | * fairly good apparent entropy, although still not cryptographically strong. |
| 435 | * |
| 436 | * The best way to use this generator is with the predefined mt19937 class. |
| 437 | * |
| 438 | * This algorithm was originally invented by Makoto Matsumoto and |
| 439 | * Takuji Nishimura. |
| 440 | * |
| 441 | * @tparam __w Word size, the number of bits in each element of |
| 442 | * the state vector. |
| 443 | * @tparam __n The degree of recursion. |
| 444 | * @tparam __m The period parameter. |
| 445 | * @tparam __r The separation point bit index. |
| 446 | * @tparam __a The last row of the twist matrix. |
| 447 | * @tparam __u The first right-shift tempering matrix parameter. |
| 448 | * @tparam __d The first right-shift tempering matrix mask. |
| 449 | * @tparam __s The first left-shift tempering matrix parameter. |
| 450 | * @tparam __b The first left-shift tempering matrix mask. |
| 451 | * @tparam __t The second left-shift tempering matrix parameter. |
| 452 | * @tparam __c The second left-shift tempering matrix mask. |
| 453 | * @tparam __l The second right-shift tempering matrix parameter. |
| 454 | * @tparam __f Initialization multiplier. |
| 455 | */ |
| 456 | template<typename _UIntType, size_t __w, |
| 457 | size_t __n, size_t __m, size_t __r, |
| 458 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 459 | _UIntType __b, size_t __t, |
| 460 | _UIntType __c, size_t __l, _UIntType __f> |
| 461 | class mersenne_twister_engine |
| 462 | { |
| 463 | static_assert(std::is_unsigned<_UIntType>::value, |
| 464 | "result_type must be an unsigned integral type" ); |
| 465 | static_assert(1u <= __m && __m <= __n, |
| 466 | "template argument substituting __m out of bounds" ); |
| 467 | static_assert(__r <= __w, "template argument substituting " |
| 468 | "__r out of bound" ); |
| 469 | static_assert(__u <= __w, "template argument substituting " |
| 470 | "__u out of bound" ); |
| 471 | static_assert(__s <= __w, "template argument substituting " |
| 472 | "__s out of bound" ); |
| 473 | static_assert(__t <= __w, "template argument substituting " |
| 474 | "__t out of bound" ); |
| 475 | static_assert(__l <= __w, "template argument substituting " |
| 476 | "__l out of bound" ); |
| 477 | static_assert(__w <= std::numeric_limits<_UIntType>::digits, |
| 478 | "template argument substituting __w out of bound" ); |
| 479 | static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 480 | "template argument substituting __a out of bound" ); |
| 481 | static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 482 | "template argument substituting __b out of bound" ); |
| 483 | static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 484 | "template argument substituting __c out of bound" ); |
| 485 | static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 486 | "template argument substituting __d out of bound" ); |
| 487 | static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 488 | "template argument substituting __f out of bound" ); |
| 489 | |
| 490 | template<typename _Sseq> |
| 491 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
| 492 | _Sseq, mersenne_twister_engine, _UIntType>::value>::type; |
| 493 | |
| 494 | public: |
| 495 | /** The type of the generated random value. */ |
| 496 | typedef _UIntType result_type; |
| 497 | |
| 498 | // parameter values |
| 499 | static constexpr size_t word_size = __w; |
| 500 | static constexpr size_t state_size = __n; |
| 501 | static constexpr size_t shift_size = __m; |
| 502 | static constexpr size_t mask_bits = __r; |
| 503 | static constexpr result_type xor_mask = __a; |
| 504 | static constexpr size_t tempering_u = __u; |
| 505 | static constexpr result_type tempering_d = __d; |
| 506 | static constexpr size_t tempering_s = __s; |
| 507 | static constexpr result_type tempering_b = __b; |
| 508 | static constexpr size_t tempering_t = __t; |
| 509 | static constexpr result_type tempering_c = __c; |
| 510 | static constexpr size_t tempering_l = __l; |
| 511 | static constexpr result_type initialization_multiplier = __f; |
| 512 | static constexpr result_type default_seed = 5489u; |
| 513 | |
| 514 | // constructors and member functions |
| 515 | |
| 516 | mersenne_twister_engine() : mersenne_twister_engine(default_seed) { } |
| 517 | |
| 518 | explicit |
| 519 | mersenne_twister_engine(result_type __sd) |
| 520 | { seed(__sd); } |
| 521 | |
| 522 | /** |
| 523 | * @brief Constructs a %mersenne_twister_engine random number generator |
| 524 | * engine seeded from the seed sequence @p __q. |
| 525 | * |
| 526 | * @param __q the seed sequence. |
| 527 | */ |
| 528 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 529 | explicit |
| 530 | mersenne_twister_engine(_Sseq& __q) |
| 531 | { seed(__q); } |
| 532 | |
| 533 | void |
| 534 | seed(result_type __sd = default_seed); |
| 535 | |
| 536 | template<typename _Sseq> |
| 537 | _If_seed_seq<_Sseq> |
| 538 | seed(_Sseq& __q); |
| 539 | |
| 540 | /** |
| 541 | * @brief Gets the smallest possible value in the output range. |
| 542 | */ |
| 543 | static constexpr result_type |
| 544 | min() |
| 545 | { return 0; } |
| 546 | |
| 547 | /** |
| 548 | * @brief Gets the largest possible value in the output range. |
| 549 | */ |
| 550 | static constexpr result_type |
| 551 | max() |
| 552 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| 553 | |
| 554 | /** |
| 555 | * @brief Discard a sequence of random numbers. |
| 556 | */ |
| 557 | void |
| 558 | discard(unsigned long long __z); |
| 559 | |
| 560 | result_type |
| 561 | operator()(); |
| 562 | |
| 563 | /** |
| 564 | * @brief Compares two % mersenne_twister_engine random number generator |
| 565 | * objects of the same type for equality. |
| 566 | * |
| 567 | * @param __lhs A % mersenne_twister_engine random number generator |
| 568 | * object. |
| 569 | * @param __rhs Another % mersenne_twister_engine random number |
| 570 | * generator object. |
| 571 | * |
| 572 | * @returns true if the infinite sequences of generated values |
| 573 | * would be equal, false otherwise. |
| 574 | */ |
| 575 | friend bool |
| 576 | operator==(const mersenne_twister_engine& __lhs, |
| 577 | const mersenne_twister_engine& __rhs) |
| 578 | { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x) |
| 579 | && __lhs._M_p == __rhs._M_p); } |
| 580 | |
| 581 | /** |
| 582 | * @brief Inserts the current state of a % mersenne_twister_engine |
| 583 | * random number generator engine @p __x into the output stream |
| 584 | * @p __os. |
| 585 | * |
| 586 | * @param __os An output stream. |
| 587 | * @param __x A % mersenne_twister_engine random number generator |
| 588 | * engine. |
| 589 | * |
| 590 | * @returns The output stream with the state of @p __x inserted or in |
| 591 | * an error state. |
| 592 | */ |
| 593 | template<typename _UIntType1, |
| 594 | size_t __w1, size_t __n1, |
| 595 | size_t __m1, size_t __r1, |
| 596 | _UIntType1 __a1, size_t __u1, |
| 597 | _UIntType1 __d1, size_t __s1, |
| 598 | _UIntType1 __b1, size_t __t1, |
| 599 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
| 600 | typename _CharT, typename _Traits> |
| 601 | friend std::basic_ostream<_CharT, _Traits>& |
| 602 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 603 | const std::mersenne_twister_engine<_UIntType1, __w1, __n1, |
| 604 | __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
| 605 | __l1, __f1>& __x); |
| 606 | |
| 607 | /** |
| 608 | * @brief Extracts the current state of a % mersenne_twister_engine |
| 609 | * random number generator engine @p __x from the input stream |
| 610 | * @p __is. |
| 611 | * |
| 612 | * @param __is An input stream. |
| 613 | * @param __x A % mersenne_twister_engine random number generator |
| 614 | * engine. |
| 615 | * |
| 616 | * @returns The input stream with the state of @p __x extracted or in |
| 617 | * an error state. |
| 618 | */ |
| 619 | template<typename _UIntType1, |
| 620 | size_t __w1, size_t __n1, |
| 621 | size_t __m1, size_t __r1, |
| 622 | _UIntType1 __a1, size_t __u1, |
| 623 | _UIntType1 __d1, size_t __s1, |
| 624 | _UIntType1 __b1, size_t __t1, |
| 625 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
| 626 | typename _CharT, typename _Traits> |
| 627 | friend std::basic_istream<_CharT, _Traits>& |
| 628 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 629 | std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1, |
| 630 | __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
| 631 | __l1, __f1>& __x); |
| 632 | |
| 633 | private: |
| 634 | void _M_gen_rand(); |
| 635 | |
| 636 | _UIntType _M_x[state_size]; |
| 637 | size_t _M_p; |
| 638 | }; |
| 639 | |
| 640 | /** |
| 641 | * @brief Compares two % mersenne_twister_engine random number generator |
| 642 | * objects of the same type for inequality. |
| 643 | * |
| 644 | * @param __lhs A % mersenne_twister_engine random number generator |
| 645 | * object. |
| 646 | * @param __rhs Another % mersenne_twister_engine random number |
| 647 | * generator object. |
| 648 | * |
| 649 | * @returns true if the infinite sequences of generated values |
| 650 | * would be different, false otherwise. |
| 651 | */ |
| 652 | template<typename _UIntType, size_t __w, |
| 653 | size_t __n, size_t __m, size_t __r, |
| 654 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 655 | _UIntType __b, size_t __t, |
| 656 | _UIntType __c, size_t __l, _UIntType __f> |
| 657 | inline bool |
| 658 | operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 659 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs, |
| 660 | const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 661 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs) |
| 662 | { return !(__lhs == __rhs); } |
| 663 | |
| 664 | |
| 665 | /** |
| 666 | * @brief The Marsaglia-Zaman generator. |
| 667 | * |
| 668 | * This is a model of a Generalized Fibonacci discrete random number |
| 669 | * generator, sometimes referred to as the SWC generator. |
| 670 | * |
| 671 | * A discrete random number generator that produces pseudorandom |
| 672 | * numbers using: |
| 673 | * @f[ |
| 674 | * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m |
| 675 | * @f] |
| 676 | * |
| 677 | * The size of the state is @f$r@f$ |
| 678 | * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$. |
| 679 | */ |
| 680 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 681 | class subtract_with_carry_engine |
| 682 | { |
| 683 | static_assert(std::is_unsigned<_UIntType>::value, |
| 684 | "result_type must be an unsigned integral type" ); |
| 685 | static_assert(0u < __s && __s < __r, |
| 686 | "0 < s < r" ); |
| 687 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
| 688 | "template argument substituting __w out of bounds" ); |
| 689 | |
| 690 | template<typename _Sseq> |
| 691 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
| 692 | _Sseq, subtract_with_carry_engine, _UIntType>::value>::type; |
| 693 | |
| 694 | public: |
| 695 | /** The type of the generated random value. */ |
| 696 | typedef _UIntType result_type; |
| 697 | |
| 698 | // parameter values |
| 699 | static constexpr size_t word_size = __w; |
| 700 | static constexpr size_t short_lag = __s; |
| 701 | static constexpr size_t long_lag = __r; |
| 702 | static constexpr result_type default_seed = 19780503u; |
| 703 | |
| 704 | subtract_with_carry_engine() : subtract_with_carry_engine(default_seed) |
| 705 | { } |
| 706 | |
| 707 | /** |
| 708 | * @brief Constructs an explicitly seeded %subtract_with_carry_engine |
| 709 | * random number generator. |
| 710 | */ |
| 711 | explicit |
| 712 | subtract_with_carry_engine(result_type __sd) |
| 713 | { seed(__sd); } |
| 714 | |
| 715 | /** |
| 716 | * @brief Constructs a %subtract_with_carry_engine random number engine |
| 717 | * seeded from the seed sequence @p __q. |
| 718 | * |
| 719 | * @param __q the seed sequence. |
| 720 | */ |
| 721 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 722 | explicit |
| 723 | subtract_with_carry_engine(_Sseq& __q) |
| 724 | { seed(__q); } |
| 725 | |
| 726 | /** |
| 727 | * @brief Seeds the initial state @f$x_0@f$ of the random number |
| 728 | * generator. |
| 729 | * |
| 730 | * N1688[4.19] modifies this as follows. If @p __value == 0, |
| 731 | * sets value to 19780503. In any case, with a linear |
| 732 | * congruential generator lcg(i) having parameters @f$ m_{lcg} = |
| 733 | * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value |
| 734 | * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m |
| 735 | * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$ |
| 736 | * set carry to 1, otherwise sets carry to 0. |
| 737 | */ |
| 738 | void |
| 739 | seed(result_type __sd = default_seed); |
| 740 | |
| 741 | /** |
| 742 | * @brief Seeds the initial state @f$x_0@f$ of the |
| 743 | * % subtract_with_carry_engine random number generator. |
| 744 | */ |
| 745 | template<typename _Sseq> |
| 746 | _If_seed_seq<_Sseq> |
| 747 | seed(_Sseq& __q); |
| 748 | |
| 749 | /** |
| 750 | * @brief Gets the inclusive minimum value of the range of random |
| 751 | * integers returned by this generator. |
| 752 | */ |
| 753 | static constexpr result_type |
| 754 | min() |
| 755 | { return 0; } |
| 756 | |
| 757 | /** |
| 758 | * @brief Gets the inclusive maximum value of the range of random |
| 759 | * integers returned by this generator. |
| 760 | */ |
| 761 | static constexpr result_type |
| 762 | max() |
| 763 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| 764 | |
| 765 | /** |
| 766 | * @brief Discard a sequence of random numbers. |
| 767 | */ |
| 768 | void |
| 769 | discard(unsigned long long __z) |
| 770 | { |
| 771 | for (; __z != 0ULL; --__z) |
| 772 | (*this)(); |
| 773 | } |
| 774 | |
| 775 | /** |
| 776 | * @brief Gets the next random number in the sequence. |
| 777 | */ |
| 778 | result_type |
| 779 | operator()(); |
| 780 | |
| 781 | /** |
| 782 | * @brief Compares two % subtract_with_carry_engine random number |
| 783 | * generator objects of the same type for equality. |
| 784 | * |
| 785 | * @param __lhs A % subtract_with_carry_engine random number generator |
| 786 | * object. |
| 787 | * @param __rhs Another % subtract_with_carry_engine random number |
| 788 | * generator object. |
| 789 | * |
| 790 | * @returns true if the infinite sequences of generated values |
| 791 | * would be equal, false otherwise. |
| 792 | */ |
| 793 | friend bool |
| 794 | operator==(const subtract_with_carry_engine& __lhs, |
| 795 | const subtract_with_carry_engine& __rhs) |
| 796 | { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x) |
| 797 | && __lhs._M_carry == __rhs._M_carry |
| 798 | && __lhs._M_p == __rhs._M_p); } |
| 799 | |
| 800 | /** |
| 801 | * @brief Inserts the current state of a % subtract_with_carry_engine |
| 802 | * random number generator engine @p __x into the output stream |
| 803 | * @p __os. |
| 804 | * |
| 805 | * @param __os An output stream. |
| 806 | * @param __x A % subtract_with_carry_engine random number generator |
| 807 | * engine. |
| 808 | * |
| 809 | * @returns The output stream with the state of @p __x inserted or in |
| 810 | * an error state. |
| 811 | */ |
| 812 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
| 813 | typename _CharT, typename _Traits> |
| 814 | friend std::basic_ostream<_CharT, _Traits>& |
| 815 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 816 | const std::subtract_with_carry_engine<_UIntType1, __w1, |
| 817 | __s1, __r1>& __x); |
| 818 | |
| 819 | /** |
| 820 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 821 | * random number generator engine @p __x from the input stream |
| 822 | * @p __is. |
| 823 | * |
| 824 | * @param __is An input stream. |
| 825 | * @param __x A % subtract_with_carry_engine random number generator |
| 826 | * engine. |
| 827 | * |
| 828 | * @returns The input stream with the state of @p __x extracted or in |
| 829 | * an error state. |
| 830 | */ |
| 831 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
| 832 | typename _CharT, typename _Traits> |
| 833 | friend std::basic_istream<_CharT, _Traits>& |
| 834 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 835 | std::subtract_with_carry_engine<_UIntType1, __w1, |
| 836 | __s1, __r1>& __x); |
| 837 | |
| 838 | private: |
| 839 | /// The state of the generator. This is a ring buffer. |
| 840 | _UIntType _M_x[long_lag]; |
| 841 | _UIntType _M_carry; ///< The carry |
| 842 | size_t _M_p; ///< Current index of x(i - r). |
| 843 | }; |
| 844 | |
| 845 | /** |
| 846 | * @brief Compares two % subtract_with_carry_engine random number |
| 847 | * generator objects of the same type for inequality. |
| 848 | * |
| 849 | * @param __lhs A % subtract_with_carry_engine random number generator |
| 850 | * object. |
| 851 | * @param __rhs Another % subtract_with_carry_engine random number |
| 852 | * generator object. |
| 853 | * |
| 854 | * @returns true if the infinite sequences of generated values |
| 855 | * would be different, false otherwise. |
| 856 | */ |
| 857 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 858 | inline bool |
| 859 | operator!=(const std::subtract_with_carry_engine<_UIntType, __w, |
| 860 | __s, __r>& __lhs, |
| 861 | const std::subtract_with_carry_engine<_UIntType, __w, |
| 862 | __s, __r>& __rhs) |
| 863 | { return !(__lhs == __rhs); } |
| 864 | |
| 865 | |
| 866 | /** |
| 867 | * Produces random numbers from some base engine by discarding blocks of |
| 868 | * data. |
| 869 | * |
| 870 | * 0 <= @p __r <= @p __p |
| 871 | */ |
| 872 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 873 | class discard_block_engine |
| 874 | { |
| 875 | static_assert(1 <= __r && __r <= __p, |
| 876 | "template argument substituting __r out of bounds" ); |
| 877 | |
| 878 | public: |
| 879 | /** The type of the generated random value. */ |
| 880 | typedef typename _RandomNumberEngine::result_type result_type; |
| 881 | |
| 882 | template<typename _Sseq> |
| 883 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
| 884 | _Sseq, discard_block_engine, result_type>::value>::type; |
| 885 | |
| 886 | // parameter values |
| 887 | static constexpr size_t block_size = __p; |
| 888 | static constexpr size_t used_block = __r; |
| 889 | |
| 890 | /** |
| 891 | * @brief Constructs a default %discard_block_engine engine. |
| 892 | * |
| 893 | * The underlying engine is default constructed as well. |
| 894 | */ |
| 895 | discard_block_engine() |
| 896 | : _M_b(), _M_n(0) { } |
| 897 | |
| 898 | /** |
| 899 | * @brief Copy constructs a %discard_block_engine engine. |
| 900 | * |
| 901 | * Copies an existing base class random number generator. |
| 902 | * @param __rng An existing (base class) engine object. |
| 903 | */ |
| 904 | explicit |
| 905 | discard_block_engine(const _RandomNumberEngine& __rng) |
| 906 | : _M_b(__rng), _M_n(0) { } |
| 907 | |
| 908 | /** |
| 909 | * @brief Move constructs a %discard_block_engine engine. |
| 910 | * |
| 911 | * Copies an existing base class random number generator. |
| 912 | * @param __rng An existing (base class) engine object. |
| 913 | */ |
| 914 | explicit |
| 915 | discard_block_engine(_RandomNumberEngine&& __rng) |
| 916 | : _M_b(std::move(__rng)), _M_n(0) { } |
| 917 | |
| 918 | /** |
| 919 | * @brief Seed constructs a %discard_block_engine engine. |
| 920 | * |
| 921 | * Constructs the underlying generator engine seeded with @p __s. |
| 922 | * @param __s A seed value for the base class engine. |
| 923 | */ |
| 924 | explicit |
| 925 | discard_block_engine(result_type __s) |
| 926 | : _M_b(__s), _M_n(0) { } |
| 927 | |
| 928 | /** |
| 929 | * @brief Generator construct a %discard_block_engine engine. |
| 930 | * |
| 931 | * @param __q A seed sequence. |
| 932 | */ |
| 933 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 934 | explicit |
| 935 | discard_block_engine(_Sseq& __q) |
| 936 | : _M_b(__q), _M_n(0) |
| 937 | { } |
| 938 | |
| 939 | /** |
| 940 | * @brief Reseeds the %discard_block_engine object with the default |
| 941 | * seed for the underlying base class generator engine. |
| 942 | */ |
| 943 | void |
| 944 | seed() |
| 945 | { |
| 946 | _M_b.seed(); |
| 947 | _M_n = 0; |
| 948 | } |
| 949 | |
| 950 | /** |
| 951 | * @brief Reseeds the %discard_block_engine object with the default |
| 952 | * seed for the underlying base class generator engine. |
| 953 | */ |
| 954 | void |
| 955 | seed(result_type __s) |
| 956 | { |
| 957 | _M_b.seed(__s); |
| 958 | _M_n = 0; |
| 959 | } |
| 960 | |
| 961 | /** |
| 962 | * @brief Reseeds the %discard_block_engine object with the given seed |
| 963 | * sequence. |
| 964 | * @param __q A seed generator function. |
| 965 | */ |
| 966 | template<typename _Sseq> |
| 967 | _If_seed_seq<_Sseq> |
| 968 | seed(_Sseq& __q) |
| 969 | { |
| 970 | _M_b.seed(__q); |
| 971 | _M_n = 0; |
| 972 | } |
| 973 | |
| 974 | /** |
| 975 | * @brief Gets a const reference to the underlying generator engine |
| 976 | * object. |
| 977 | */ |
| 978 | const _RandomNumberEngine& |
| 979 | base() const noexcept |
| 980 | { return _M_b; } |
| 981 | |
| 982 | /** |
| 983 | * @brief Gets the minimum value in the generated random number range. |
| 984 | */ |
| 985 | static constexpr result_type |
| 986 | min() |
| 987 | { return _RandomNumberEngine::min(); } |
| 988 | |
| 989 | /** |
| 990 | * @brief Gets the maximum value in the generated random number range. |
| 991 | */ |
| 992 | static constexpr result_type |
| 993 | max() |
| 994 | { return _RandomNumberEngine::max(); } |
| 995 | |
| 996 | /** |
| 997 | * @brief Discard a sequence of random numbers. |
| 998 | */ |
| 999 | void |
| 1000 | discard(unsigned long long __z) |
| 1001 | { |
| 1002 | for (; __z != 0ULL; --__z) |
| 1003 | (*this)(); |
| 1004 | } |
| 1005 | |
| 1006 | /** |
| 1007 | * @brief Gets the next value in the generated random number sequence. |
| 1008 | */ |
| 1009 | result_type |
| 1010 | operator()(); |
| 1011 | |
| 1012 | /** |
| 1013 | * @brief Compares two %discard_block_engine random number generator |
| 1014 | * objects of the same type for equality. |
| 1015 | * |
| 1016 | * @param __lhs A %discard_block_engine random number generator object. |
| 1017 | * @param __rhs Another %discard_block_engine random number generator |
| 1018 | * object. |
| 1019 | * |
| 1020 | * @returns true if the infinite sequences of generated values |
| 1021 | * would be equal, false otherwise. |
| 1022 | */ |
| 1023 | friend bool |
| 1024 | operator==(const discard_block_engine& __lhs, |
| 1025 | const discard_block_engine& __rhs) |
| 1026 | { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; } |
| 1027 | |
| 1028 | /** |
| 1029 | * @brief Inserts the current state of a %discard_block_engine random |
| 1030 | * number generator engine @p __x into the output stream |
| 1031 | * @p __os. |
| 1032 | * |
| 1033 | * @param __os An output stream. |
| 1034 | * @param __x A %discard_block_engine random number generator engine. |
| 1035 | * |
| 1036 | * @returns The output stream with the state of @p __x inserted or in |
| 1037 | * an error state. |
| 1038 | */ |
| 1039 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
| 1040 | typename _CharT, typename _Traits> |
| 1041 | friend std::basic_ostream<_CharT, _Traits>& |
| 1042 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1043 | const std::discard_block_engine<_RandomNumberEngine1, |
| 1044 | __p1, __r1>& __x); |
| 1045 | |
| 1046 | /** |
| 1047 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 1048 | * random number generator engine @p __x from the input stream |
| 1049 | * @p __is. |
| 1050 | * |
| 1051 | * @param __is An input stream. |
| 1052 | * @param __x A %discard_block_engine random number generator engine. |
| 1053 | * |
| 1054 | * @returns The input stream with the state of @p __x extracted or in |
| 1055 | * an error state. |
| 1056 | */ |
| 1057 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
| 1058 | typename _CharT, typename _Traits> |
| 1059 | friend std::basic_istream<_CharT, _Traits>& |
| 1060 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1061 | std::discard_block_engine<_RandomNumberEngine1, |
| 1062 | __p1, __r1>& __x); |
| 1063 | |
| 1064 | private: |
| 1065 | _RandomNumberEngine _M_b; |
| 1066 | size_t _M_n; |
| 1067 | }; |
| 1068 | |
| 1069 | /** |
| 1070 | * @brief Compares two %discard_block_engine random number generator |
| 1071 | * objects of the same type for inequality. |
| 1072 | * |
| 1073 | * @param __lhs A %discard_block_engine random number generator object. |
| 1074 | * @param __rhs Another %discard_block_engine random number generator |
| 1075 | * object. |
| 1076 | * |
| 1077 | * @returns true if the infinite sequences of generated values |
| 1078 | * would be different, false otherwise. |
| 1079 | */ |
| 1080 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 1081 | inline bool |
| 1082 | operator!=(const std::discard_block_engine<_RandomNumberEngine, __p, |
| 1083 | __r>& __lhs, |
| 1084 | const std::discard_block_engine<_RandomNumberEngine, __p, |
| 1085 | __r>& __rhs) |
| 1086 | { return !(__lhs == __rhs); } |
| 1087 | |
| 1088 | |
| 1089 | /** |
| 1090 | * Produces random numbers by combining random numbers from some base |
| 1091 | * engine to produce random numbers with a specifies number of bits @p __w. |
| 1092 | */ |
| 1093 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| 1094 | class independent_bits_engine |
| 1095 | { |
| 1096 | static_assert(std::is_unsigned<_UIntType>::value, |
| 1097 | "result_type must be an unsigned integral type" ); |
| 1098 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
| 1099 | "template argument substituting __w out of bounds" ); |
| 1100 | |
| 1101 | template<typename _Sseq> |
| 1102 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
| 1103 | _Sseq, independent_bits_engine, _UIntType>::value>::type; |
| 1104 | |
| 1105 | public: |
| 1106 | /** The type of the generated random value. */ |
| 1107 | typedef _UIntType result_type; |
| 1108 | |
| 1109 | /** |
| 1110 | * @brief Constructs a default %independent_bits_engine engine. |
| 1111 | * |
| 1112 | * The underlying engine is default constructed as well. |
| 1113 | */ |
| 1114 | independent_bits_engine() |
| 1115 | : _M_b() { } |
| 1116 | |
| 1117 | /** |
| 1118 | * @brief Copy constructs a %independent_bits_engine engine. |
| 1119 | * |
| 1120 | * Copies an existing base class random number generator. |
| 1121 | * @param __rng An existing (base class) engine object. |
| 1122 | */ |
| 1123 | explicit |
| 1124 | independent_bits_engine(const _RandomNumberEngine& __rng) |
| 1125 | : _M_b(__rng) { } |
| 1126 | |
| 1127 | /** |
| 1128 | * @brief Move constructs a %independent_bits_engine engine. |
| 1129 | * |
| 1130 | * Copies an existing base class random number generator. |
| 1131 | * @param __rng An existing (base class) engine object. |
| 1132 | */ |
| 1133 | explicit |
| 1134 | independent_bits_engine(_RandomNumberEngine&& __rng) |
| 1135 | : _M_b(std::move(__rng)) { } |
| 1136 | |
| 1137 | /** |
| 1138 | * @brief Seed constructs a %independent_bits_engine engine. |
| 1139 | * |
| 1140 | * Constructs the underlying generator engine seeded with @p __s. |
| 1141 | * @param __s A seed value for the base class engine. |
| 1142 | */ |
| 1143 | explicit |
| 1144 | independent_bits_engine(result_type __s) |
| 1145 | : _M_b(__s) { } |
| 1146 | |
| 1147 | /** |
| 1148 | * @brief Generator construct a %independent_bits_engine engine. |
| 1149 | * |
| 1150 | * @param __q A seed sequence. |
| 1151 | */ |
| 1152 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 1153 | explicit |
| 1154 | independent_bits_engine(_Sseq& __q) |
| 1155 | : _M_b(__q) |
| 1156 | { } |
| 1157 | |
| 1158 | /** |
| 1159 | * @brief Reseeds the %independent_bits_engine object with the default |
| 1160 | * seed for the underlying base class generator engine. |
| 1161 | */ |
| 1162 | void |
| 1163 | seed() |
| 1164 | { _M_b.seed(); } |
| 1165 | |
| 1166 | /** |
| 1167 | * @brief Reseeds the %independent_bits_engine object with the default |
| 1168 | * seed for the underlying base class generator engine. |
| 1169 | */ |
| 1170 | void |
| 1171 | seed(result_type __s) |
| 1172 | { _M_b.seed(__s); } |
| 1173 | |
| 1174 | /** |
| 1175 | * @brief Reseeds the %independent_bits_engine object with the given |
| 1176 | * seed sequence. |
| 1177 | * @param __q A seed generator function. |
| 1178 | */ |
| 1179 | template<typename _Sseq> |
| 1180 | _If_seed_seq<_Sseq> |
| 1181 | seed(_Sseq& __q) |
| 1182 | { _M_b.seed(__q); } |
| 1183 | |
| 1184 | /** |
| 1185 | * @brief Gets a const reference to the underlying generator engine |
| 1186 | * object. |
| 1187 | */ |
| 1188 | const _RandomNumberEngine& |
| 1189 | base() const noexcept |
| 1190 | { return _M_b; } |
| 1191 | |
| 1192 | /** |
| 1193 | * @brief Gets the minimum value in the generated random number range. |
| 1194 | */ |
| 1195 | static constexpr result_type |
| 1196 | min() |
| 1197 | { return 0U; } |
| 1198 | |
| 1199 | /** |
| 1200 | * @brief Gets the maximum value in the generated random number range. |
| 1201 | */ |
| 1202 | static constexpr result_type |
| 1203 | max() |
| 1204 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| 1205 | |
| 1206 | /** |
| 1207 | * @brief Discard a sequence of random numbers. |
| 1208 | */ |
| 1209 | void |
| 1210 | discard(unsigned long long __z) |
| 1211 | { |
| 1212 | for (; __z != 0ULL; --__z) |
| 1213 | (*this)(); |
| 1214 | } |
| 1215 | |
| 1216 | /** |
| 1217 | * @brief Gets the next value in the generated random number sequence. |
| 1218 | */ |
| 1219 | result_type |
| 1220 | operator()(); |
| 1221 | |
| 1222 | /** |
| 1223 | * @brief Compares two %independent_bits_engine random number generator |
| 1224 | * objects of the same type for equality. |
| 1225 | * |
| 1226 | * @param __lhs A %independent_bits_engine random number generator |
| 1227 | * object. |
| 1228 | * @param __rhs Another %independent_bits_engine random number generator |
| 1229 | * object. |
| 1230 | * |
| 1231 | * @returns true if the infinite sequences of generated values |
| 1232 | * would be equal, false otherwise. |
| 1233 | */ |
| 1234 | friend bool |
| 1235 | operator==(const independent_bits_engine& __lhs, |
| 1236 | const independent_bits_engine& __rhs) |
| 1237 | { return __lhs._M_b == __rhs._M_b; } |
| 1238 | |
| 1239 | /** |
| 1240 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 1241 | * random number generator engine @p __x from the input stream |
| 1242 | * @p __is. |
| 1243 | * |
| 1244 | * @param __is An input stream. |
| 1245 | * @param __x A %independent_bits_engine random number generator |
| 1246 | * engine. |
| 1247 | * |
| 1248 | * @returns The input stream with the state of @p __x extracted or in |
| 1249 | * an error state. |
| 1250 | */ |
| 1251 | template<typename _CharT, typename _Traits> |
| 1252 | friend std::basic_istream<_CharT, _Traits>& |
| 1253 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1254 | std::independent_bits_engine<_RandomNumberEngine, |
| 1255 | __w, _UIntType>& __x) |
| 1256 | { |
| 1257 | __is >> __x._M_b; |
| 1258 | return __is; |
| 1259 | } |
| 1260 | |
| 1261 | private: |
| 1262 | _RandomNumberEngine _M_b; |
| 1263 | }; |
| 1264 | |
| 1265 | /** |
| 1266 | * @brief Compares two %independent_bits_engine random number generator |
| 1267 | * objects of the same type for inequality. |
| 1268 | * |
| 1269 | * @param __lhs A %independent_bits_engine random number generator |
| 1270 | * object. |
| 1271 | * @param __rhs Another %independent_bits_engine random number generator |
| 1272 | * object. |
| 1273 | * |
| 1274 | * @returns true if the infinite sequences of generated values |
| 1275 | * would be different, false otherwise. |
| 1276 | */ |
| 1277 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| 1278 | inline bool |
| 1279 | operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w, |
| 1280 | _UIntType>& __lhs, |
| 1281 | const std::independent_bits_engine<_RandomNumberEngine, __w, |
| 1282 | _UIntType>& __rhs) |
| 1283 | { return !(__lhs == __rhs); } |
| 1284 | |
| 1285 | /** |
| 1286 | * @brief Inserts the current state of a %independent_bits_engine random |
| 1287 | * number generator engine @p __x into the output stream @p __os. |
| 1288 | * |
| 1289 | * @param __os An output stream. |
| 1290 | * @param __x A %independent_bits_engine random number generator engine. |
| 1291 | * |
| 1292 | * @returns The output stream with the state of @p __x inserted or in |
| 1293 | * an error state. |
| 1294 | */ |
| 1295 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType, |
| 1296 | typename _CharT, typename _Traits> |
| 1297 | std::basic_ostream<_CharT, _Traits>& |
| 1298 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1299 | const std::independent_bits_engine<_RandomNumberEngine, |
| 1300 | __w, _UIntType>& __x) |
| 1301 | { |
| 1302 | __os << __x.base(); |
| 1303 | return __os; |
| 1304 | } |
| 1305 | |
| 1306 | |
| 1307 | /** |
| 1308 | * @brief Produces random numbers by combining random numbers from some |
| 1309 | * base engine to produce random numbers with a specifies number of bits |
| 1310 | * @p __k. |
| 1311 | */ |
| 1312 | template<typename _RandomNumberEngine, size_t __k> |
| 1313 | class shuffle_order_engine |
| 1314 | { |
| 1315 | static_assert(1u <= __k, "template argument substituting " |
| 1316 | "__k out of bound" ); |
| 1317 | |
| 1318 | public: |
| 1319 | /** The type of the generated random value. */ |
| 1320 | typedef typename _RandomNumberEngine::result_type result_type; |
| 1321 | |
| 1322 | template<typename _Sseq> |
| 1323 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
| 1324 | _Sseq, shuffle_order_engine, result_type>::value>::type; |
| 1325 | |
| 1326 | static constexpr size_t table_size = __k; |
| 1327 | |
| 1328 | /** |
| 1329 | * @brief Constructs a default %shuffle_order_engine engine. |
| 1330 | * |
| 1331 | * The underlying engine is default constructed as well. |
| 1332 | */ |
| 1333 | shuffle_order_engine() |
| 1334 | : _M_b() |
| 1335 | { _M_initialize(); } |
| 1336 | |
| 1337 | /** |
| 1338 | * @brief Copy constructs a %shuffle_order_engine engine. |
| 1339 | * |
| 1340 | * Copies an existing base class random number generator. |
| 1341 | * @param __rng An existing (base class) engine object. |
| 1342 | */ |
| 1343 | explicit |
| 1344 | shuffle_order_engine(const _RandomNumberEngine& __rng) |
| 1345 | : _M_b(__rng) |
| 1346 | { _M_initialize(); } |
| 1347 | |
| 1348 | /** |
| 1349 | * @brief Move constructs a %shuffle_order_engine engine. |
| 1350 | * |
| 1351 | * Copies an existing base class random number generator. |
| 1352 | * @param __rng An existing (base class) engine object. |
| 1353 | */ |
| 1354 | explicit |
| 1355 | shuffle_order_engine(_RandomNumberEngine&& __rng) |
| 1356 | : _M_b(std::move(__rng)) |
| 1357 | { _M_initialize(); } |
| 1358 | |
| 1359 | /** |
| 1360 | * @brief Seed constructs a %shuffle_order_engine engine. |
| 1361 | * |
| 1362 | * Constructs the underlying generator engine seeded with @p __s. |
| 1363 | * @param __s A seed value for the base class engine. |
| 1364 | */ |
| 1365 | explicit |
| 1366 | shuffle_order_engine(result_type __s) |
| 1367 | : _M_b(__s) |
| 1368 | { _M_initialize(); } |
| 1369 | |
| 1370 | /** |
| 1371 | * @brief Generator construct a %shuffle_order_engine engine. |
| 1372 | * |
| 1373 | * @param __q A seed sequence. |
| 1374 | */ |
| 1375 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 1376 | explicit |
| 1377 | shuffle_order_engine(_Sseq& __q) |
| 1378 | : _M_b(__q) |
| 1379 | { _M_initialize(); } |
| 1380 | |
| 1381 | /** |
| 1382 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
| 1383 | for the underlying base class generator engine. |
| 1384 | */ |
| 1385 | void |
| 1386 | seed() |
| 1387 | { |
| 1388 | _M_b.seed(); |
| 1389 | _M_initialize(); |
| 1390 | } |
| 1391 | |
| 1392 | /** |
| 1393 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
| 1394 | * for the underlying base class generator engine. |
| 1395 | */ |
| 1396 | void |
| 1397 | seed(result_type __s) |
| 1398 | { |
| 1399 | _M_b.seed(__s); |
| 1400 | _M_initialize(); |
| 1401 | } |
| 1402 | |
| 1403 | /** |
| 1404 | * @brief Reseeds the %shuffle_order_engine object with the given seed |
| 1405 | * sequence. |
| 1406 | * @param __q A seed generator function. |
| 1407 | */ |
| 1408 | template<typename _Sseq> |
| 1409 | _If_seed_seq<_Sseq> |
| 1410 | seed(_Sseq& __q) |
| 1411 | { |
| 1412 | _M_b.seed(__q); |
| 1413 | _M_initialize(); |
| 1414 | } |
| 1415 | |
| 1416 | /** |
| 1417 | * Gets a const reference to the underlying generator engine object. |
| 1418 | */ |
| 1419 | const _RandomNumberEngine& |
| 1420 | base() const noexcept |
| 1421 | { return _M_b; } |
| 1422 | |
| 1423 | /** |
| 1424 | * Gets the minimum value in the generated random number range. |
| 1425 | */ |
| 1426 | static constexpr result_type |
| 1427 | min() |
| 1428 | { return _RandomNumberEngine::min(); } |
| 1429 | |
| 1430 | /** |
| 1431 | * Gets the maximum value in the generated random number range. |
| 1432 | */ |
| 1433 | static constexpr result_type |
| 1434 | max() |
| 1435 | { return _RandomNumberEngine::max(); } |
| 1436 | |
| 1437 | /** |
| 1438 | * Discard a sequence of random numbers. |
| 1439 | */ |
| 1440 | void |
| 1441 | discard(unsigned long long __z) |
| 1442 | { |
| 1443 | for (; __z != 0ULL; --__z) |
| 1444 | (*this)(); |
| 1445 | } |
| 1446 | |
| 1447 | /** |
| 1448 | * Gets the next value in the generated random number sequence. |
| 1449 | */ |
| 1450 | result_type |
| 1451 | operator()(); |
| 1452 | |
| 1453 | /** |
| 1454 | * Compares two %shuffle_order_engine random number generator objects |
| 1455 | * of the same type for equality. |
| 1456 | * |
| 1457 | * @param __lhs A %shuffle_order_engine random number generator object. |
| 1458 | * @param __rhs Another %shuffle_order_engine random number generator |
| 1459 | * object. |
| 1460 | * |
| 1461 | * @returns true if the infinite sequences of generated values |
| 1462 | * would be equal, false otherwise. |
| 1463 | */ |
| 1464 | friend bool |
| 1465 | operator==(const shuffle_order_engine& __lhs, |
| 1466 | const shuffle_order_engine& __rhs) |
| 1467 | { return (__lhs._M_b == __rhs._M_b |
| 1468 | && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v) |
| 1469 | && __lhs._M_y == __rhs._M_y); } |
| 1470 | |
| 1471 | /** |
| 1472 | * @brief Inserts the current state of a %shuffle_order_engine random |
| 1473 | * number generator engine @p __x into the output stream |
| 1474 | @p __os. |
| 1475 | * |
| 1476 | * @param __os An output stream. |
| 1477 | * @param __x A %shuffle_order_engine random number generator engine. |
| 1478 | * |
| 1479 | * @returns The output stream with the state of @p __x inserted or in |
| 1480 | * an error state. |
| 1481 | */ |
| 1482 | template<typename _RandomNumberEngine1, size_t __k1, |
| 1483 | typename _CharT, typename _Traits> |
| 1484 | friend std::basic_ostream<_CharT, _Traits>& |
| 1485 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1486 | const std::shuffle_order_engine<_RandomNumberEngine1, |
| 1487 | __k1>& __x); |
| 1488 | |
| 1489 | /** |
| 1490 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 1491 | * random number generator engine @p __x from the input stream |
| 1492 | * @p __is. |
| 1493 | * |
| 1494 | * @param __is An input stream. |
| 1495 | * @param __x A %shuffle_order_engine random number generator engine. |
| 1496 | * |
| 1497 | * @returns The input stream with the state of @p __x extracted or in |
| 1498 | * an error state. |
| 1499 | */ |
| 1500 | template<typename _RandomNumberEngine1, size_t __k1, |
| 1501 | typename _CharT, typename _Traits> |
| 1502 | friend std::basic_istream<_CharT, _Traits>& |
| 1503 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1504 | std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x); |
| 1505 | |
| 1506 | private: |
| 1507 | void _M_initialize() |
| 1508 | { |
| 1509 | for (size_t __i = 0; __i < __k; ++__i) |
| 1510 | _M_v[__i] = _M_b(); |
| 1511 | _M_y = _M_b(); |
| 1512 | } |
| 1513 | |
| 1514 | _RandomNumberEngine _M_b; |
| 1515 | result_type _M_v[__k]; |
| 1516 | result_type _M_y; |
| 1517 | }; |
| 1518 | |
| 1519 | /** |
| 1520 | * Compares two %shuffle_order_engine random number generator objects |
| 1521 | * of the same type for inequality. |
| 1522 | * |
| 1523 | * @param __lhs A %shuffle_order_engine random number generator object. |
| 1524 | * @param __rhs Another %shuffle_order_engine random number generator |
| 1525 | * object. |
| 1526 | * |
| 1527 | * @returns true if the infinite sequences of generated values |
| 1528 | * would be different, false otherwise. |
| 1529 | */ |
| 1530 | template<typename _RandomNumberEngine, size_t __k> |
| 1531 | inline bool |
| 1532 | operator!=(const std::shuffle_order_engine<_RandomNumberEngine, |
| 1533 | __k>& __lhs, |
| 1534 | const std::shuffle_order_engine<_RandomNumberEngine, |
| 1535 | __k>& __rhs) |
| 1536 | { return !(__lhs == __rhs); } |
| 1537 | |
| 1538 | |
| 1539 | /** |
| 1540 | * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller. |
| 1541 | */ |
| 1542 | typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL> |
| 1543 | minstd_rand0; |
| 1544 | |
| 1545 | /** |
| 1546 | * An alternative LCR (Lehmer Generator function). |
| 1547 | */ |
| 1548 | typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL> |
| 1549 | minstd_rand; |
| 1550 | |
| 1551 | /** |
| 1552 | * The classic Mersenne Twister. |
| 1553 | * |
| 1554 | * Reference: |
| 1555 | * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally |
| 1556 | * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions |
| 1557 | * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. |
| 1558 | */ |
| 1559 | typedef mersenne_twister_engine< |
| 1560 | uint_fast32_t, |
| 1561 | 32, 624, 397, 31, |
| 1562 | 0x9908b0dfUL, 11, |
| 1563 | 0xffffffffUL, 7, |
| 1564 | 0x9d2c5680UL, 15, |
| 1565 | 0xefc60000UL, 18, 1812433253UL> mt19937; |
| 1566 | |
| 1567 | /** |
| 1568 | * An alternative Mersenne Twister. |
| 1569 | */ |
| 1570 | typedef mersenne_twister_engine< |
| 1571 | uint_fast64_t, |
| 1572 | 64, 312, 156, 31, |
| 1573 | 0xb5026f5aa96619e9ULL, 29, |
| 1574 | 0x5555555555555555ULL, 17, |
| 1575 | 0x71d67fffeda60000ULL, 37, |
| 1576 | 0xfff7eee000000000ULL, 43, |
| 1577 | 6364136223846793005ULL> mt19937_64; |
| 1578 | |
| 1579 | typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> |
| 1580 | ranlux24_base; |
| 1581 | |
| 1582 | typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> |
| 1583 | ranlux48_base; |
| 1584 | |
| 1585 | typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; |
| 1586 | |
| 1587 | typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; |
| 1588 | |
| 1589 | typedef shuffle_order_engine<minstd_rand0, 256> knuth_b; |
| 1590 | |
| 1591 | typedef minstd_rand0 default_random_engine; |
| 1592 | |
| 1593 | /** |
| 1594 | * A standard interface to a platform-specific non-deterministic |
| 1595 | * random number generator (if any are available). |
| 1596 | */ |
| 1597 | class random_device |
| 1598 | { |
| 1599 | public: |
| 1600 | /** The type of the generated random value. */ |
| 1601 | typedef unsigned int result_type; |
| 1602 | |
| 1603 | // constructors, destructors and member functions |
| 1604 | |
| 1605 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
| 1606 | random_device() { _M_init("default" ); } |
| 1607 | |
| 1608 | explicit |
| 1609 | random_device(const std::string& __token) { _M_init(__token); } |
| 1610 | |
| 1611 | ~random_device() |
| 1612 | { _M_fini(); } |
| 1613 | #else |
| 1614 | random_device() { _M_init_pretr1("mt19937" ); } |
| 1615 | |
| 1616 | explicit |
| 1617 | random_device(const std::string& __token) |
| 1618 | { _M_init_pretr1(__token); } |
| 1619 | #endif |
| 1620 | |
| 1621 | static constexpr result_type |
| 1622 | min() |
| 1623 | { return std::numeric_limits<result_type>::min(); } |
| 1624 | |
| 1625 | static constexpr result_type |
| 1626 | max() |
| 1627 | { return std::numeric_limits<result_type>::max(); } |
| 1628 | |
| 1629 | double |
| 1630 | entropy() const noexcept |
| 1631 | { |
| 1632 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
| 1633 | return this->_M_getentropy(); |
| 1634 | #else |
| 1635 | return 0.0; |
| 1636 | #endif |
| 1637 | } |
| 1638 | |
| 1639 | result_type |
| 1640 | operator()() |
| 1641 | { |
| 1642 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
| 1643 | return this->_M_getval(); |
| 1644 | #else |
| 1645 | return this->_M_getval_pretr1(); |
| 1646 | #endif |
| 1647 | } |
| 1648 | |
| 1649 | // No copy functions. |
| 1650 | random_device(const random_device&) = delete; |
| 1651 | void operator=(const random_device&) = delete; |
| 1652 | |
| 1653 | private: |
| 1654 | |
| 1655 | void _M_init(const std::string& __token); |
| 1656 | void _M_init_pretr1(const std::string& __token); |
| 1657 | void _M_fini(); |
| 1658 | |
| 1659 | result_type _M_getval(); |
| 1660 | result_type _M_getval_pretr1(); |
| 1661 | double _M_getentropy() const noexcept; |
| 1662 | |
| 1663 | union |
| 1664 | { |
| 1665 | void* _M_file; |
| 1666 | mt19937 _M_mt; |
| 1667 | }; |
| 1668 | }; |
| 1669 | |
| 1670 | /* @} */ // group random_generators |
| 1671 | |
| 1672 | /** |
| 1673 | * @addtogroup random_distributions Random Number Distributions |
| 1674 | * @ingroup random |
| 1675 | * @{ |
| 1676 | */ |
| 1677 | |
| 1678 | /** |
| 1679 | * @addtogroup random_distributions_uniform Uniform Distributions |
| 1680 | * @ingroup random_distributions |
| 1681 | * @{ |
| 1682 | */ |
| 1683 | |
| 1684 | // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h> |
| 1685 | |
| 1686 | /** |
| 1687 | * @brief Return true if two uniform integer distributions have |
| 1688 | * different parameters. |
| 1689 | */ |
| 1690 | template<typename _IntType> |
| 1691 | inline bool |
| 1692 | operator!=(const std::uniform_int_distribution<_IntType>& __d1, |
| 1693 | const std::uniform_int_distribution<_IntType>& __d2) |
| 1694 | { return !(__d1 == __d2); } |
| 1695 | |
| 1696 | /** |
| 1697 | * @brief Inserts a %uniform_int_distribution random number |
| 1698 | * distribution @p __x into the output stream @p os. |
| 1699 | * |
| 1700 | * @param __os An output stream. |
| 1701 | * @param __x A %uniform_int_distribution random number distribution. |
| 1702 | * |
| 1703 | * @returns The output stream with the state of @p __x inserted or in |
| 1704 | * an error state. |
| 1705 | */ |
| 1706 | template<typename _IntType, typename _CharT, typename _Traits> |
| 1707 | std::basic_ostream<_CharT, _Traits>& |
| 1708 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1709 | const std::uniform_int_distribution<_IntType>&); |
| 1710 | |
| 1711 | /** |
| 1712 | * @brief Extracts a %uniform_int_distribution random number distribution |
| 1713 | * @p __x from the input stream @p __is. |
| 1714 | * |
| 1715 | * @param __is An input stream. |
| 1716 | * @param __x A %uniform_int_distribution random number generator engine. |
| 1717 | * |
| 1718 | * @returns The input stream with @p __x extracted or in an error state. |
| 1719 | */ |
| 1720 | template<typename _IntType, typename _CharT, typename _Traits> |
| 1721 | std::basic_istream<_CharT, _Traits>& |
| 1722 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1723 | std::uniform_int_distribution<_IntType>&); |
| 1724 | |
| 1725 | |
| 1726 | /** |
| 1727 | * @brief Uniform continuous distribution for random numbers. |
| 1728 | * |
| 1729 | * A continuous random distribution on the range [min, max) with equal |
| 1730 | * probability throughout the range. The URNG should be real-valued and |
| 1731 | * deliver number in the range [0, 1). |
| 1732 | */ |
| 1733 | template<typename _RealType = double> |
| 1734 | class uniform_real_distribution |
| 1735 | { |
| 1736 | static_assert(std::is_floating_point<_RealType>::value, |
| 1737 | "result_type must be a floating point type" ); |
| 1738 | |
| 1739 | public: |
| 1740 | /** The type of the range of the distribution. */ |
| 1741 | typedef _RealType result_type; |
| 1742 | |
| 1743 | /** Parameter type. */ |
| 1744 | struct param_type |
| 1745 | { |
| 1746 | typedef uniform_real_distribution<_RealType> distribution_type; |
| 1747 | |
| 1748 | param_type() : param_type(0) { } |
| 1749 | |
| 1750 | explicit |
| 1751 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
| 1752 | : _M_a(__a), _M_b(__b) |
| 1753 | { |
| 1754 | __glibcxx_assert(_M_a <= _M_b); |
| 1755 | } |
| 1756 | |
| 1757 | result_type |
| 1758 | a() const |
| 1759 | { return _M_a; } |
| 1760 | |
| 1761 | result_type |
| 1762 | b() const |
| 1763 | { return _M_b; } |
| 1764 | |
| 1765 | friend bool |
| 1766 | operator==(const param_type& __p1, const param_type& __p2) |
| 1767 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 1768 | |
| 1769 | friend bool |
| 1770 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1771 | { return !(__p1 == __p2); } |
| 1772 | |
| 1773 | private: |
| 1774 | _RealType _M_a; |
| 1775 | _RealType _M_b; |
| 1776 | }; |
| 1777 | |
| 1778 | public: |
| 1779 | /** |
| 1780 | * @brief Constructs a uniform_real_distribution object. |
| 1781 | * |
| 1782 | * The lower bound is set to 0.0 and the upper bound to 1.0 |
| 1783 | */ |
| 1784 | uniform_real_distribution() : uniform_real_distribution(0.0) { } |
| 1785 | |
| 1786 | /** |
| 1787 | * @brief Constructs a uniform_real_distribution object. |
| 1788 | * |
| 1789 | * @param __a [IN] The lower bound of the distribution. |
| 1790 | * @param __b [IN] The upper bound of the distribution. |
| 1791 | */ |
| 1792 | explicit |
| 1793 | uniform_real_distribution(_RealType __a, _RealType __b = _RealType(1)) |
| 1794 | : _M_param(__a, __b) |
| 1795 | { } |
| 1796 | |
| 1797 | explicit |
| 1798 | uniform_real_distribution(const param_type& __p) |
| 1799 | : _M_param(__p) |
| 1800 | { } |
| 1801 | |
| 1802 | /** |
| 1803 | * @brief Resets the distribution state. |
| 1804 | * |
| 1805 | * Does nothing for the uniform real distribution. |
| 1806 | */ |
| 1807 | void |
| 1808 | reset() { } |
| 1809 | |
| 1810 | result_type |
| 1811 | a() const |
| 1812 | { return _M_param.a(); } |
| 1813 | |
| 1814 | result_type |
| 1815 | b() const |
| 1816 | { return _M_param.b(); } |
| 1817 | |
| 1818 | /** |
| 1819 | * @brief Returns the parameter set of the distribution. |
| 1820 | */ |
| 1821 | param_type |
| 1822 | param() const |
| 1823 | { return _M_param; } |
| 1824 | |
| 1825 | /** |
| 1826 | * @brief Sets the parameter set of the distribution. |
| 1827 | * @param __param The new parameter set of the distribution. |
| 1828 | */ |
| 1829 | void |
| 1830 | param(const param_type& __param) |
| 1831 | { _M_param = __param; } |
| 1832 | |
| 1833 | /** |
| 1834 | * @brief Returns the inclusive lower bound of the distribution range. |
| 1835 | */ |
| 1836 | result_type |
| 1837 | min() const |
| 1838 | { return this->a(); } |
| 1839 | |
| 1840 | /** |
| 1841 | * @brief Returns the inclusive upper bound of the distribution range. |
| 1842 | */ |
| 1843 | result_type |
| 1844 | max() const |
| 1845 | { return this->b(); } |
| 1846 | |
| 1847 | /** |
| 1848 | * @brief Generating functions. |
| 1849 | */ |
| 1850 | template<typename _UniformRandomNumberGenerator> |
| 1851 | result_type |
| 1852 | operator()(_UniformRandomNumberGenerator& __urng) |
| 1853 | { return this->operator()(__urng, _M_param); } |
| 1854 | |
| 1855 | template<typename _UniformRandomNumberGenerator> |
| 1856 | result_type |
| 1857 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1858 | const param_type& __p) |
| 1859 | { |
| 1860 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1861 | __aurng(__urng); |
| 1862 | return (__aurng() * (__p.b() - __p.a())) + __p.a(); |
| 1863 | } |
| 1864 | |
| 1865 | template<typename _ForwardIterator, |
| 1866 | typename _UniformRandomNumberGenerator> |
| 1867 | void |
| 1868 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1869 | _UniformRandomNumberGenerator& __urng) |
| 1870 | { this->__generate(__f, __t, __urng, _M_param); } |
| 1871 | |
| 1872 | template<typename _ForwardIterator, |
| 1873 | typename _UniformRandomNumberGenerator> |
| 1874 | void |
| 1875 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1876 | _UniformRandomNumberGenerator& __urng, |
| 1877 | const param_type& __p) |
| 1878 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1879 | |
| 1880 | template<typename _UniformRandomNumberGenerator> |
| 1881 | void |
| 1882 | __generate(result_type* __f, result_type* __t, |
| 1883 | _UniformRandomNumberGenerator& __urng, |
| 1884 | const param_type& __p) |
| 1885 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1886 | |
| 1887 | /** |
| 1888 | * @brief Return true if two uniform real distributions have |
| 1889 | * the same parameters. |
| 1890 | */ |
| 1891 | friend bool |
| 1892 | operator==(const uniform_real_distribution& __d1, |
| 1893 | const uniform_real_distribution& __d2) |
| 1894 | { return __d1._M_param == __d2._M_param; } |
| 1895 | |
| 1896 | private: |
| 1897 | template<typename _ForwardIterator, |
| 1898 | typename _UniformRandomNumberGenerator> |
| 1899 | void |
| 1900 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1901 | _UniformRandomNumberGenerator& __urng, |
| 1902 | const param_type& __p); |
| 1903 | |
| 1904 | param_type _M_param; |
| 1905 | }; |
| 1906 | |
| 1907 | /** |
| 1908 | * @brief Return true if two uniform real distributions have |
| 1909 | * different parameters. |
| 1910 | */ |
| 1911 | template<typename _IntType> |
| 1912 | inline bool |
| 1913 | operator!=(const std::uniform_real_distribution<_IntType>& __d1, |
| 1914 | const std::uniform_real_distribution<_IntType>& __d2) |
| 1915 | { return !(__d1 == __d2); } |
| 1916 | |
| 1917 | /** |
| 1918 | * @brief Inserts a %uniform_real_distribution random number |
| 1919 | * distribution @p __x into the output stream @p __os. |
| 1920 | * |
| 1921 | * @param __os An output stream. |
| 1922 | * @param __x A %uniform_real_distribution random number distribution. |
| 1923 | * |
| 1924 | * @returns The output stream with the state of @p __x inserted or in |
| 1925 | * an error state. |
| 1926 | */ |
| 1927 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1928 | std::basic_ostream<_CharT, _Traits>& |
| 1929 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1930 | const std::uniform_real_distribution<_RealType>&); |
| 1931 | |
| 1932 | /** |
| 1933 | * @brief Extracts a %uniform_real_distribution random number distribution |
| 1934 | * @p __x from the input stream @p __is. |
| 1935 | * |
| 1936 | * @param __is An input stream. |
| 1937 | * @param __x A %uniform_real_distribution random number generator engine. |
| 1938 | * |
| 1939 | * @returns The input stream with @p __x extracted or in an error state. |
| 1940 | */ |
| 1941 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1942 | std::basic_istream<_CharT, _Traits>& |
| 1943 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1944 | std::uniform_real_distribution<_RealType>&); |
| 1945 | |
| 1946 | /* @} */ // group random_distributions_uniform |
| 1947 | |
| 1948 | /** |
| 1949 | * @addtogroup random_distributions_normal Normal Distributions |
| 1950 | * @ingroup random_distributions |
| 1951 | * @{ |
| 1952 | */ |
| 1953 | |
| 1954 | /** |
| 1955 | * @brief A normal continuous distribution for random numbers. |
| 1956 | * |
| 1957 | * The formula for the normal probability density function is |
| 1958 | * @f[ |
| 1959 | * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} |
| 1960 | * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } |
| 1961 | * @f] |
| 1962 | */ |
| 1963 | template<typename _RealType = double> |
| 1964 | class normal_distribution |
| 1965 | { |
| 1966 | static_assert(std::is_floating_point<_RealType>::value, |
| 1967 | "result_type must be a floating point type" ); |
| 1968 | |
| 1969 | public: |
| 1970 | /** The type of the range of the distribution. */ |
| 1971 | typedef _RealType result_type; |
| 1972 | |
| 1973 | /** Parameter type. */ |
| 1974 | struct param_type |
| 1975 | { |
| 1976 | typedef normal_distribution<_RealType> distribution_type; |
| 1977 | |
| 1978 | param_type() : param_type(0.0) { } |
| 1979 | |
| 1980 | explicit |
| 1981 | param_type(_RealType __mean, _RealType __stddev = _RealType(1)) |
| 1982 | : _M_mean(__mean), _M_stddev(__stddev) |
| 1983 | { |
| 1984 | __glibcxx_assert(_M_stddev > _RealType(0)); |
| 1985 | } |
| 1986 | |
| 1987 | _RealType |
| 1988 | mean() const |
| 1989 | { return _M_mean; } |
| 1990 | |
| 1991 | _RealType |
| 1992 | stddev() const |
| 1993 | { return _M_stddev; } |
| 1994 | |
| 1995 | friend bool |
| 1996 | operator==(const param_type& __p1, const param_type& __p2) |
| 1997 | { return (__p1._M_mean == __p2._M_mean |
| 1998 | && __p1._M_stddev == __p2._M_stddev); } |
| 1999 | |
| 2000 | friend bool |
| 2001 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2002 | { return !(__p1 == __p2); } |
| 2003 | |
| 2004 | private: |
| 2005 | _RealType _M_mean; |
| 2006 | _RealType _M_stddev; |
| 2007 | }; |
| 2008 | |
| 2009 | public: |
| 2010 | normal_distribution() : normal_distribution(0.0) { } |
| 2011 | |
| 2012 | /** |
| 2013 | * Constructs a normal distribution with parameters @f$mean@f$ and |
| 2014 | * standard deviation. |
| 2015 | */ |
| 2016 | explicit |
| 2017 | normal_distribution(result_type __mean, |
| 2018 | result_type __stddev = result_type(1)) |
| 2019 | : _M_param(__mean, __stddev), _M_saved_available(false) |
| 2020 | { } |
| 2021 | |
| 2022 | explicit |
| 2023 | normal_distribution(const param_type& __p) |
| 2024 | : _M_param(__p), _M_saved_available(false) |
| 2025 | { } |
| 2026 | |
| 2027 | /** |
| 2028 | * @brief Resets the distribution state. |
| 2029 | */ |
| 2030 | void |
| 2031 | reset() |
| 2032 | { _M_saved_available = false; } |
| 2033 | |
| 2034 | /** |
| 2035 | * @brief Returns the mean of the distribution. |
| 2036 | */ |
| 2037 | _RealType |
| 2038 | mean() const |
| 2039 | { return _M_param.mean(); } |
| 2040 | |
| 2041 | /** |
| 2042 | * @brief Returns the standard deviation of the distribution. |
| 2043 | */ |
| 2044 | _RealType |
| 2045 | stddev() const |
| 2046 | { return _M_param.stddev(); } |
| 2047 | |
| 2048 | /** |
| 2049 | * @brief Returns the parameter set of the distribution. |
| 2050 | */ |
| 2051 | param_type |
| 2052 | param() const |
| 2053 | { return _M_param; } |
| 2054 | |
| 2055 | /** |
| 2056 | * @brief Sets the parameter set of the distribution. |
| 2057 | * @param __param The new parameter set of the distribution. |
| 2058 | */ |
| 2059 | void |
| 2060 | param(const param_type& __param) |
| 2061 | { _M_param = __param; } |
| 2062 | |
| 2063 | /** |
| 2064 | * @brief Returns the greatest lower bound value of the distribution. |
| 2065 | */ |
| 2066 | result_type |
| 2067 | min() const |
| 2068 | { return std::numeric_limits<result_type>::lowest(); } |
| 2069 | |
| 2070 | /** |
| 2071 | * @brief Returns the least upper bound value of the distribution. |
| 2072 | */ |
| 2073 | result_type |
| 2074 | max() const |
| 2075 | { return std::numeric_limits<result_type>::max(); } |
| 2076 | |
| 2077 | /** |
| 2078 | * @brief Generating functions. |
| 2079 | */ |
| 2080 | template<typename _UniformRandomNumberGenerator> |
| 2081 | result_type |
| 2082 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2083 | { return this->operator()(__urng, _M_param); } |
| 2084 | |
| 2085 | template<typename _UniformRandomNumberGenerator> |
| 2086 | result_type |
| 2087 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2088 | const param_type& __p); |
| 2089 | |
| 2090 | template<typename _ForwardIterator, |
| 2091 | typename _UniformRandomNumberGenerator> |
| 2092 | void |
| 2093 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2094 | _UniformRandomNumberGenerator& __urng) |
| 2095 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2096 | |
| 2097 | template<typename _ForwardIterator, |
| 2098 | typename _UniformRandomNumberGenerator> |
| 2099 | void |
| 2100 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2101 | _UniformRandomNumberGenerator& __urng, |
| 2102 | const param_type& __p) |
| 2103 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2104 | |
| 2105 | template<typename _UniformRandomNumberGenerator> |
| 2106 | void |
| 2107 | __generate(result_type* __f, result_type* __t, |
| 2108 | _UniformRandomNumberGenerator& __urng, |
| 2109 | const param_type& __p) |
| 2110 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2111 | |
| 2112 | /** |
| 2113 | * @brief Return true if two normal distributions have |
| 2114 | * the same parameters and the sequences that would |
| 2115 | * be generated are equal. |
| 2116 | */ |
| 2117 | template<typename _RealType1> |
| 2118 | friend bool |
| 2119 | operator==(const std::normal_distribution<_RealType1>& __d1, |
| 2120 | const std::normal_distribution<_RealType1>& __d2); |
| 2121 | |
| 2122 | /** |
| 2123 | * @brief Inserts a %normal_distribution random number distribution |
| 2124 | * @p __x into the output stream @p __os. |
| 2125 | * |
| 2126 | * @param __os An output stream. |
| 2127 | * @param __x A %normal_distribution random number distribution. |
| 2128 | * |
| 2129 | * @returns The output stream with the state of @p __x inserted or in |
| 2130 | * an error state. |
| 2131 | */ |
| 2132 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2133 | friend std::basic_ostream<_CharT, _Traits>& |
| 2134 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2135 | const std::normal_distribution<_RealType1>& __x); |
| 2136 | |
| 2137 | /** |
| 2138 | * @brief Extracts a %normal_distribution random number distribution |
| 2139 | * @p __x from the input stream @p __is. |
| 2140 | * |
| 2141 | * @param __is An input stream. |
| 2142 | * @param __x A %normal_distribution random number generator engine. |
| 2143 | * |
| 2144 | * @returns The input stream with @p __x extracted or in an error |
| 2145 | * state. |
| 2146 | */ |
| 2147 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2148 | friend std::basic_istream<_CharT, _Traits>& |
| 2149 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2150 | std::normal_distribution<_RealType1>& __x); |
| 2151 | |
| 2152 | private: |
| 2153 | template<typename _ForwardIterator, |
| 2154 | typename _UniformRandomNumberGenerator> |
| 2155 | void |
| 2156 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2157 | _UniformRandomNumberGenerator& __urng, |
| 2158 | const param_type& __p); |
| 2159 | |
| 2160 | param_type _M_param; |
| 2161 | result_type _M_saved; |
| 2162 | bool _M_saved_available; |
| 2163 | }; |
| 2164 | |
| 2165 | /** |
| 2166 | * @brief Return true if two normal distributions are different. |
| 2167 | */ |
| 2168 | template<typename _RealType> |
| 2169 | inline bool |
| 2170 | operator!=(const std::normal_distribution<_RealType>& __d1, |
| 2171 | const std::normal_distribution<_RealType>& __d2) |
| 2172 | { return !(__d1 == __d2); } |
| 2173 | |
| 2174 | |
| 2175 | /** |
| 2176 | * @brief A lognormal_distribution random number distribution. |
| 2177 | * |
| 2178 | * The formula for the normal probability mass function is |
| 2179 | * @f[ |
| 2180 | * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}} |
| 2181 | * \exp{-\frac{(\ln{x} - m)^2}{2s^2}} |
| 2182 | * @f] |
| 2183 | */ |
| 2184 | template<typename _RealType = double> |
| 2185 | class lognormal_distribution |
| 2186 | { |
| 2187 | static_assert(std::is_floating_point<_RealType>::value, |
| 2188 | "result_type must be a floating point type" ); |
| 2189 | |
| 2190 | public: |
| 2191 | /** The type of the range of the distribution. */ |
| 2192 | typedef _RealType result_type; |
| 2193 | |
| 2194 | /** Parameter type. */ |
| 2195 | struct param_type |
| 2196 | { |
| 2197 | typedef lognormal_distribution<_RealType> distribution_type; |
| 2198 | |
| 2199 | param_type() : param_type(0.0) { } |
| 2200 | |
| 2201 | explicit |
| 2202 | param_type(_RealType __m, _RealType __s = _RealType(1)) |
| 2203 | : _M_m(__m), _M_s(__s) |
| 2204 | { } |
| 2205 | |
| 2206 | _RealType |
| 2207 | m() const |
| 2208 | { return _M_m; } |
| 2209 | |
| 2210 | _RealType |
| 2211 | s() const |
| 2212 | { return _M_s; } |
| 2213 | |
| 2214 | friend bool |
| 2215 | operator==(const param_type& __p1, const param_type& __p2) |
| 2216 | { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; } |
| 2217 | |
| 2218 | friend bool |
| 2219 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2220 | { return !(__p1 == __p2); } |
| 2221 | |
| 2222 | private: |
| 2223 | _RealType _M_m; |
| 2224 | _RealType _M_s; |
| 2225 | }; |
| 2226 | |
| 2227 | lognormal_distribution() : lognormal_distribution(0.0) { } |
| 2228 | |
| 2229 | explicit |
| 2230 | lognormal_distribution(_RealType __m, _RealType __s = _RealType(1)) |
| 2231 | : _M_param(__m, __s), _M_nd() |
| 2232 | { } |
| 2233 | |
| 2234 | explicit |
| 2235 | lognormal_distribution(const param_type& __p) |
| 2236 | : _M_param(__p), _M_nd() |
| 2237 | { } |
| 2238 | |
| 2239 | /** |
| 2240 | * Resets the distribution state. |
| 2241 | */ |
| 2242 | void |
| 2243 | reset() |
| 2244 | { _M_nd.reset(); } |
| 2245 | |
| 2246 | /** |
| 2247 | * |
| 2248 | */ |
| 2249 | _RealType |
| 2250 | m() const |
| 2251 | { return _M_param.m(); } |
| 2252 | |
| 2253 | _RealType |
| 2254 | s() const |
| 2255 | { return _M_param.s(); } |
| 2256 | |
| 2257 | /** |
| 2258 | * @brief Returns the parameter set of the distribution. |
| 2259 | */ |
| 2260 | param_type |
| 2261 | param() const |
| 2262 | { return _M_param; } |
| 2263 | |
| 2264 | /** |
| 2265 | * @brief Sets the parameter set of the distribution. |
| 2266 | * @param __param The new parameter set of the distribution. |
| 2267 | */ |
| 2268 | void |
| 2269 | param(const param_type& __param) |
| 2270 | { _M_param = __param; } |
| 2271 | |
| 2272 | /** |
| 2273 | * @brief Returns the greatest lower bound value of the distribution. |
| 2274 | */ |
| 2275 | result_type |
| 2276 | min() const |
| 2277 | { return result_type(0); } |
| 2278 | |
| 2279 | /** |
| 2280 | * @brief Returns the least upper bound value of the distribution. |
| 2281 | */ |
| 2282 | result_type |
| 2283 | max() const |
| 2284 | { return std::numeric_limits<result_type>::max(); } |
| 2285 | |
| 2286 | /** |
| 2287 | * @brief Generating functions. |
| 2288 | */ |
| 2289 | template<typename _UniformRandomNumberGenerator> |
| 2290 | result_type |
| 2291 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2292 | { return this->operator()(__urng, _M_param); } |
| 2293 | |
| 2294 | template<typename _UniformRandomNumberGenerator> |
| 2295 | result_type |
| 2296 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2297 | const param_type& __p) |
| 2298 | { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); } |
| 2299 | |
| 2300 | template<typename _ForwardIterator, |
| 2301 | typename _UniformRandomNumberGenerator> |
| 2302 | void |
| 2303 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2304 | _UniformRandomNumberGenerator& __urng) |
| 2305 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2306 | |
| 2307 | template<typename _ForwardIterator, |
| 2308 | typename _UniformRandomNumberGenerator> |
| 2309 | void |
| 2310 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2311 | _UniformRandomNumberGenerator& __urng, |
| 2312 | const param_type& __p) |
| 2313 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2314 | |
| 2315 | template<typename _UniformRandomNumberGenerator> |
| 2316 | void |
| 2317 | __generate(result_type* __f, result_type* __t, |
| 2318 | _UniformRandomNumberGenerator& __urng, |
| 2319 | const param_type& __p) |
| 2320 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2321 | |
| 2322 | /** |
| 2323 | * @brief Return true if two lognormal distributions have |
| 2324 | * the same parameters and the sequences that would |
| 2325 | * be generated are equal. |
| 2326 | */ |
| 2327 | friend bool |
| 2328 | operator==(const lognormal_distribution& __d1, |
| 2329 | const lognormal_distribution& __d2) |
| 2330 | { return (__d1._M_param == __d2._M_param |
| 2331 | && __d1._M_nd == __d2._M_nd); } |
| 2332 | |
| 2333 | /** |
| 2334 | * @brief Inserts a %lognormal_distribution random number distribution |
| 2335 | * @p __x into the output stream @p __os. |
| 2336 | * |
| 2337 | * @param __os An output stream. |
| 2338 | * @param __x A %lognormal_distribution random number distribution. |
| 2339 | * |
| 2340 | * @returns The output stream with the state of @p __x inserted or in |
| 2341 | * an error state. |
| 2342 | */ |
| 2343 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2344 | friend std::basic_ostream<_CharT, _Traits>& |
| 2345 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2346 | const std::lognormal_distribution<_RealType1>& __x); |
| 2347 | |
| 2348 | /** |
| 2349 | * @brief Extracts a %lognormal_distribution random number distribution |
| 2350 | * @p __x from the input stream @p __is. |
| 2351 | * |
| 2352 | * @param __is An input stream. |
| 2353 | * @param __x A %lognormal_distribution random number |
| 2354 | * generator engine. |
| 2355 | * |
| 2356 | * @returns The input stream with @p __x extracted or in an error state. |
| 2357 | */ |
| 2358 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2359 | friend std::basic_istream<_CharT, _Traits>& |
| 2360 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2361 | std::lognormal_distribution<_RealType1>& __x); |
| 2362 | |
| 2363 | private: |
| 2364 | template<typename _ForwardIterator, |
| 2365 | typename _UniformRandomNumberGenerator> |
| 2366 | void |
| 2367 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2368 | _UniformRandomNumberGenerator& __urng, |
| 2369 | const param_type& __p); |
| 2370 | |
| 2371 | param_type _M_param; |
| 2372 | |
| 2373 | std::normal_distribution<result_type> _M_nd; |
| 2374 | }; |
| 2375 | |
| 2376 | /** |
| 2377 | * @brief Return true if two lognormal distributions are different. |
| 2378 | */ |
| 2379 | template<typename _RealType> |
| 2380 | inline bool |
| 2381 | operator!=(const std::lognormal_distribution<_RealType>& __d1, |
| 2382 | const std::lognormal_distribution<_RealType>& __d2) |
| 2383 | { return !(__d1 == __d2); } |
| 2384 | |
| 2385 | |
| 2386 | /** |
| 2387 | * @brief A gamma continuous distribution for random numbers. |
| 2388 | * |
| 2389 | * The formula for the gamma probability density function is: |
| 2390 | * @f[ |
| 2391 | * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} |
| 2392 | * (x/\beta)^{\alpha - 1} e^{-x/\beta} |
| 2393 | * @f] |
| 2394 | */ |
| 2395 | template<typename _RealType = double> |
| 2396 | class gamma_distribution |
| 2397 | { |
| 2398 | static_assert(std::is_floating_point<_RealType>::value, |
| 2399 | "result_type must be a floating point type" ); |
| 2400 | |
| 2401 | public: |
| 2402 | /** The type of the range of the distribution. */ |
| 2403 | typedef _RealType result_type; |
| 2404 | |
| 2405 | /** Parameter type. */ |
| 2406 | struct param_type |
| 2407 | { |
| 2408 | typedef gamma_distribution<_RealType> distribution_type; |
| 2409 | friend class gamma_distribution<_RealType>; |
| 2410 | |
| 2411 | param_type() : param_type(1.0) { } |
| 2412 | |
| 2413 | explicit |
| 2414 | param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1)) |
| 2415 | : _M_alpha(__alpha_val), _M_beta(__beta_val) |
| 2416 | { |
| 2417 | __glibcxx_assert(_M_alpha > _RealType(0)); |
| 2418 | _M_initialize(); |
| 2419 | } |
| 2420 | |
| 2421 | _RealType |
| 2422 | alpha() const |
| 2423 | { return _M_alpha; } |
| 2424 | |
| 2425 | _RealType |
| 2426 | beta() const |
| 2427 | { return _M_beta; } |
| 2428 | |
| 2429 | friend bool |
| 2430 | operator==(const param_type& __p1, const param_type& __p2) |
| 2431 | { return (__p1._M_alpha == __p2._M_alpha |
| 2432 | && __p1._M_beta == __p2._M_beta); } |
| 2433 | |
| 2434 | friend bool |
| 2435 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2436 | { return !(__p1 == __p2); } |
| 2437 | |
| 2438 | private: |
| 2439 | void |
| 2440 | _M_initialize(); |
| 2441 | |
| 2442 | _RealType _M_alpha; |
| 2443 | _RealType _M_beta; |
| 2444 | |
| 2445 | _RealType _M_malpha, _M_a2; |
| 2446 | }; |
| 2447 | |
| 2448 | public: |
| 2449 | /** |
| 2450 | * @brief Constructs a gamma distribution with parameters 1 and 1. |
| 2451 | */ |
| 2452 | gamma_distribution() : gamma_distribution(1.0) { } |
| 2453 | |
| 2454 | /** |
| 2455 | * @brief Constructs a gamma distribution with parameters |
| 2456 | * @f$\alpha@f$ and @f$\beta@f$. |
| 2457 | */ |
| 2458 | explicit |
| 2459 | gamma_distribution(_RealType __alpha_val, |
| 2460 | _RealType __beta_val = _RealType(1)) |
| 2461 | : _M_param(__alpha_val, __beta_val), _M_nd() |
| 2462 | { } |
| 2463 | |
| 2464 | explicit |
| 2465 | gamma_distribution(const param_type& __p) |
| 2466 | : _M_param(__p), _M_nd() |
| 2467 | { } |
| 2468 | |
| 2469 | /** |
| 2470 | * @brief Resets the distribution state. |
| 2471 | */ |
| 2472 | void |
| 2473 | reset() |
| 2474 | { _M_nd.reset(); } |
| 2475 | |
| 2476 | /** |
| 2477 | * @brief Returns the @f$\alpha@f$ of the distribution. |
| 2478 | */ |
| 2479 | _RealType |
| 2480 | alpha() const |
| 2481 | { return _M_param.alpha(); } |
| 2482 | |
| 2483 | /** |
| 2484 | * @brief Returns the @f$\beta@f$ of the distribution. |
| 2485 | */ |
| 2486 | _RealType |
| 2487 | beta() const |
| 2488 | { return _M_param.beta(); } |
| 2489 | |
| 2490 | /** |
| 2491 | * @brief Returns the parameter set of the distribution. |
| 2492 | */ |
| 2493 | param_type |
| 2494 | param() const |
| 2495 | { return _M_param; } |
| 2496 | |
| 2497 | /** |
| 2498 | * @brief Sets the parameter set of the distribution. |
| 2499 | * @param __param The new parameter set of the distribution. |
| 2500 | */ |
| 2501 | void |
| 2502 | param(const param_type& __param) |
| 2503 | { _M_param = __param; } |
| 2504 | |
| 2505 | /** |
| 2506 | * @brief Returns the greatest lower bound value of the distribution. |
| 2507 | */ |
| 2508 | result_type |
| 2509 | min() const |
| 2510 | { return result_type(0); } |
| 2511 | |
| 2512 | /** |
| 2513 | * @brief Returns the least upper bound value of the distribution. |
| 2514 | */ |
| 2515 | result_type |
| 2516 | max() const |
| 2517 | { return std::numeric_limits<result_type>::max(); } |
| 2518 | |
| 2519 | /** |
| 2520 | * @brief Generating functions. |
| 2521 | */ |
| 2522 | template<typename _UniformRandomNumberGenerator> |
| 2523 | result_type |
| 2524 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2525 | { return this->operator()(__urng, _M_param); } |
| 2526 | |
| 2527 | template<typename _UniformRandomNumberGenerator> |
| 2528 | result_type |
| 2529 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2530 | const param_type& __p); |
| 2531 | |
| 2532 | template<typename _ForwardIterator, |
| 2533 | typename _UniformRandomNumberGenerator> |
| 2534 | void |
| 2535 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2536 | _UniformRandomNumberGenerator& __urng) |
| 2537 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2538 | |
| 2539 | template<typename _ForwardIterator, |
| 2540 | typename _UniformRandomNumberGenerator> |
| 2541 | void |
| 2542 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2543 | _UniformRandomNumberGenerator& __urng, |
| 2544 | const param_type& __p) |
| 2545 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2546 | |
| 2547 | template<typename _UniformRandomNumberGenerator> |
| 2548 | void |
| 2549 | __generate(result_type* __f, result_type* __t, |
| 2550 | _UniformRandomNumberGenerator& __urng, |
| 2551 | const param_type& __p) |
| 2552 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2553 | |
| 2554 | /** |
| 2555 | * @brief Return true if two gamma distributions have the same |
| 2556 | * parameters and the sequences that would be generated |
| 2557 | * are equal. |
| 2558 | */ |
| 2559 | friend bool |
| 2560 | operator==(const gamma_distribution& __d1, |
| 2561 | const gamma_distribution& __d2) |
| 2562 | { return (__d1._M_param == __d2._M_param |
| 2563 | && __d1._M_nd == __d2._M_nd); } |
| 2564 | |
| 2565 | /** |
| 2566 | * @brief Inserts a %gamma_distribution random number distribution |
| 2567 | * @p __x into the output stream @p __os. |
| 2568 | * |
| 2569 | * @param __os An output stream. |
| 2570 | * @param __x A %gamma_distribution random number distribution. |
| 2571 | * |
| 2572 | * @returns The output stream with the state of @p __x inserted or in |
| 2573 | * an error state. |
| 2574 | */ |
| 2575 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2576 | friend std::basic_ostream<_CharT, _Traits>& |
| 2577 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2578 | const std::gamma_distribution<_RealType1>& __x); |
| 2579 | |
| 2580 | /** |
| 2581 | * @brief Extracts a %gamma_distribution random number distribution |
| 2582 | * @p __x from the input stream @p __is. |
| 2583 | * |
| 2584 | * @param __is An input stream. |
| 2585 | * @param __x A %gamma_distribution random number generator engine. |
| 2586 | * |
| 2587 | * @returns The input stream with @p __x extracted or in an error state. |
| 2588 | */ |
| 2589 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2590 | friend std::basic_istream<_CharT, _Traits>& |
| 2591 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2592 | std::gamma_distribution<_RealType1>& __x); |
| 2593 | |
| 2594 | private: |
| 2595 | template<typename _ForwardIterator, |
| 2596 | typename _UniformRandomNumberGenerator> |
| 2597 | void |
| 2598 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2599 | _UniformRandomNumberGenerator& __urng, |
| 2600 | const param_type& __p); |
| 2601 | |
| 2602 | param_type _M_param; |
| 2603 | |
| 2604 | std::normal_distribution<result_type> _M_nd; |
| 2605 | }; |
| 2606 | |
| 2607 | /** |
| 2608 | * @brief Return true if two gamma distributions are different. |
| 2609 | */ |
| 2610 | template<typename _RealType> |
| 2611 | inline bool |
| 2612 | operator!=(const std::gamma_distribution<_RealType>& __d1, |
| 2613 | const std::gamma_distribution<_RealType>& __d2) |
| 2614 | { return !(__d1 == __d2); } |
| 2615 | |
| 2616 | |
| 2617 | /** |
| 2618 | * @brief A chi_squared_distribution random number distribution. |
| 2619 | * |
| 2620 | * The formula for the normal probability mass function is |
| 2621 | * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$ |
| 2622 | */ |
| 2623 | template<typename _RealType = double> |
| 2624 | class chi_squared_distribution |
| 2625 | { |
| 2626 | static_assert(std::is_floating_point<_RealType>::value, |
| 2627 | "result_type must be a floating point type" ); |
| 2628 | |
| 2629 | public: |
| 2630 | /** The type of the range of the distribution. */ |
| 2631 | typedef _RealType result_type; |
| 2632 | |
| 2633 | /** Parameter type. */ |
| 2634 | struct param_type |
| 2635 | { |
| 2636 | typedef chi_squared_distribution<_RealType> distribution_type; |
| 2637 | |
| 2638 | param_type() : param_type(1) { } |
| 2639 | |
| 2640 | explicit |
| 2641 | param_type(_RealType __n) |
| 2642 | : _M_n(__n) |
| 2643 | { } |
| 2644 | |
| 2645 | _RealType |
| 2646 | n() const |
| 2647 | { return _M_n; } |
| 2648 | |
| 2649 | friend bool |
| 2650 | operator==(const param_type& __p1, const param_type& __p2) |
| 2651 | { return __p1._M_n == __p2._M_n; } |
| 2652 | |
| 2653 | friend bool |
| 2654 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2655 | { return !(__p1 == __p2); } |
| 2656 | |
| 2657 | private: |
| 2658 | _RealType _M_n; |
| 2659 | }; |
| 2660 | |
| 2661 | chi_squared_distribution() : chi_squared_distribution(1) { } |
| 2662 | |
| 2663 | explicit |
| 2664 | chi_squared_distribution(_RealType __n) |
| 2665 | : _M_param(__n), _M_gd(__n / 2) |
| 2666 | { } |
| 2667 | |
| 2668 | explicit |
| 2669 | chi_squared_distribution(const param_type& __p) |
| 2670 | : _M_param(__p), _M_gd(__p.n() / 2) |
| 2671 | { } |
| 2672 | |
| 2673 | /** |
| 2674 | * @brief Resets the distribution state. |
| 2675 | */ |
| 2676 | void |
| 2677 | reset() |
| 2678 | { _M_gd.reset(); } |
| 2679 | |
| 2680 | /** |
| 2681 | * |
| 2682 | */ |
| 2683 | _RealType |
| 2684 | n() const |
| 2685 | { return _M_param.n(); } |
| 2686 | |
| 2687 | /** |
| 2688 | * @brief Returns the parameter set of the distribution. |
| 2689 | */ |
| 2690 | param_type |
| 2691 | param() const |
| 2692 | { return _M_param; } |
| 2693 | |
| 2694 | /** |
| 2695 | * @brief Sets the parameter set of the distribution. |
| 2696 | * @param __param The new parameter set of the distribution. |
| 2697 | */ |
| 2698 | void |
| 2699 | param(const param_type& __param) |
| 2700 | { |
| 2701 | _M_param = __param; |
| 2702 | typedef typename std::gamma_distribution<result_type>::param_type |
| 2703 | param_type; |
| 2704 | _M_gd.param(param_type{__param.n() / 2}); |
| 2705 | } |
| 2706 | |
| 2707 | /** |
| 2708 | * @brief Returns the greatest lower bound value of the distribution. |
| 2709 | */ |
| 2710 | result_type |
| 2711 | min() const |
| 2712 | { return result_type(0); } |
| 2713 | |
| 2714 | /** |
| 2715 | * @brief Returns the least upper bound value of the distribution. |
| 2716 | */ |
| 2717 | result_type |
| 2718 | max() const |
| 2719 | { return std::numeric_limits<result_type>::max(); } |
| 2720 | |
| 2721 | /** |
| 2722 | * @brief Generating functions. |
| 2723 | */ |
| 2724 | template<typename _UniformRandomNumberGenerator> |
| 2725 | result_type |
| 2726 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2727 | { return 2 * _M_gd(__urng); } |
| 2728 | |
| 2729 | template<typename _UniformRandomNumberGenerator> |
| 2730 | result_type |
| 2731 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2732 | const param_type& __p) |
| 2733 | { |
| 2734 | typedef typename std::gamma_distribution<result_type>::param_type |
| 2735 | param_type; |
| 2736 | return 2 * _M_gd(__urng, param_type(__p.n() / 2)); |
| 2737 | } |
| 2738 | |
| 2739 | template<typename _ForwardIterator, |
| 2740 | typename _UniformRandomNumberGenerator> |
| 2741 | void |
| 2742 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2743 | _UniformRandomNumberGenerator& __urng) |
| 2744 | { this->__generate_impl(__f, __t, __urng); } |
| 2745 | |
| 2746 | template<typename _ForwardIterator, |
| 2747 | typename _UniformRandomNumberGenerator> |
| 2748 | void |
| 2749 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2750 | _UniformRandomNumberGenerator& __urng, |
| 2751 | const param_type& __p) |
| 2752 | { typename std::gamma_distribution<result_type>::param_type |
| 2753 | __p2(__p.n() / 2); |
| 2754 | this->__generate_impl(__f, __t, __urng, __p2); } |
| 2755 | |
| 2756 | template<typename _UniformRandomNumberGenerator> |
| 2757 | void |
| 2758 | __generate(result_type* __f, result_type* __t, |
| 2759 | _UniformRandomNumberGenerator& __urng) |
| 2760 | { this->__generate_impl(__f, __t, __urng); } |
| 2761 | |
| 2762 | template<typename _UniformRandomNumberGenerator> |
| 2763 | void |
| 2764 | __generate(result_type* __f, result_type* __t, |
| 2765 | _UniformRandomNumberGenerator& __urng, |
| 2766 | const param_type& __p) |
| 2767 | { typename std::gamma_distribution<result_type>::param_type |
| 2768 | __p2(__p.n() / 2); |
| 2769 | this->__generate_impl(__f, __t, __urng, __p2); } |
| 2770 | |
| 2771 | /** |
| 2772 | * @brief Return true if two Chi-squared distributions have |
| 2773 | * the same parameters and the sequences that would be |
| 2774 | * generated are equal. |
| 2775 | */ |
| 2776 | friend bool |
| 2777 | operator==(const chi_squared_distribution& __d1, |
| 2778 | const chi_squared_distribution& __d2) |
| 2779 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
| 2780 | |
| 2781 | /** |
| 2782 | * @brief Inserts a %chi_squared_distribution random number distribution |
| 2783 | * @p __x into the output stream @p __os. |
| 2784 | * |
| 2785 | * @param __os An output stream. |
| 2786 | * @param __x A %chi_squared_distribution random number distribution. |
| 2787 | * |
| 2788 | * @returns The output stream with the state of @p __x inserted or in |
| 2789 | * an error state. |
| 2790 | */ |
| 2791 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2792 | friend std::basic_ostream<_CharT, _Traits>& |
| 2793 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2794 | const std::chi_squared_distribution<_RealType1>& __x); |
| 2795 | |
| 2796 | /** |
| 2797 | * @brief Extracts a %chi_squared_distribution random number distribution |
| 2798 | * @p __x from the input stream @p __is. |
| 2799 | * |
| 2800 | * @param __is An input stream. |
| 2801 | * @param __x A %chi_squared_distribution random number |
| 2802 | * generator engine. |
| 2803 | * |
| 2804 | * @returns The input stream with @p __x extracted or in an error state. |
| 2805 | */ |
| 2806 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2807 | friend std::basic_istream<_CharT, _Traits>& |
| 2808 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2809 | std::chi_squared_distribution<_RealType1>& __x); |
| 2810 | |
| 2811 | private: |
| 2812 | template<typename _ForwardIterator, |
| 2813 | typename _UniformRandomNumberGenerator> |
| 2814 | void |
| 2815 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2816 | _UniformRandomNumberGenerator& __urng); |
| 2817 | |
| 2818 | template<typename _ForwardIterator, |
| 2819 | typename _UniformRandomNumberGenerator> |
| 2820 | void |
| 2821 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2822 | _UniformRandomNumberGenerator& __urng, |
| 2823 | const typename |
| 2824 | std::gamma_distribution<result_type>::param_type& __p); |
| 2825 | |
| 2826 | param_type _M_param; |
| 2827 | |
| 2828 | std::gamma_distribution<result_type> _M_gd; |
| 2829 | }; |
| 2830 | |
| 2831 | /** |
| 2832 | * @brief Return true if two Chi-squared distributions are different. |
| 2833 | */ |
| 2834 | template<typename _RealType> |
| 2835 | inline bool |
| 2836 | operator!=(const std::chi_squared_distribution<_RealType>& __d1, |
| 2837 | const std::chi_squared_distribution<_RealType>& __d2) |
| 2838 | { return !(__d1 == __d2); } |
| 2839 | |
| 2840 | |
| 2841 | /** |
| 2842 | * @brief A cauchy_distribution random number distribution. |
| 2843 | * |
| 2844 | * The formula for the normal probability mass function is |
| 2845 | * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$ |
| 2846 | */ |
| 2847 | template<typename _RealType = double> |
| 2848 | class cauchy_distribution |
| 2849 | { |
| 2850 | static_assert(std::is_floating_point<_RealType>::value, |
| 2851 | "result_type must be a floating point type" ); |
| 2852 | |
| 2853 | public: |
| 2854 | /** The type of the range of the distribution. */ |
| 2855 | typedef _RealType result_type; |
| 2856 | |
| 2857 | /** Parameter type. */ |
| 2858 | struct param_type |
| 2859 | { |
| 2860 | typedef cauchy_distribution<_RealType> distribution_type; |
| 2861 | |
| 2862 | param_type() : param_type(0) { } |
| 2863 | |
| 2864 | explicit |
| 2865 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
| 2866 | : _M_a(__a), _M_b(__b) |
| 2867 | { } |
| 2868 | |
| 2869 | _RealType |
| 2870 | a() const |
| 2871 | { return _M_a; } |
| 2872 | |
| 2873 | _RealType |
| 2874 | b() const |
| 2875 | { return _M_b; } |
| 2876 | |
| 2877 | friend bool |
| 2878 | operator==(const param_type& __p1, const param_type& __p2) |
| 2879 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 2880 | |
| 2881 | friend bool |
| 2882 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2883 | { return !(__p1 == __p2); } |
| 2884 | |
| 2885 | private: |
| 2886 | _RealType _M_a; |
| 2887 | _RealType _M_b; |
| 2888 | }; |
| 2889 | |
| 2890 | cauchy_distribution() : cauchy_distribution(0.0) { } |
| 2891 | |
| 2892 | explicit |
| 2893 | cauchy_distribution(_RealType __a, _RealType __b = 1.0) |
| 2894 | : _M_param(__a, __b) |
| 2895 | { } |
| 2896 | |
| 2897 | explicit |
| 2898 | cauchy_distribution(const param_type& __p) |
| 2899 | : _M_param(__p) |
| 2900 | { } |
| 2901 | |
| 2902 | /** |
| 2903 | * @brief Resets the distribution state. |
| 2904 | */ |
| 2905 | void |
| 2906 | reset() |
| 2907 | { } |
| 2908 | |
| 2909 | /** |
| 2910 | * |
| 2911 | */ |
| 2912 | _RealType |
| 2913 | a() const |
| 2914 | { return _M_param.a(); } |
| 2915 | |
| 2916 | _RealType |
| 2917 | b() const |
| 2918 | { return _M_param.b(); } |
| 2919 | |
| 2920 | /** |
| 2921 | * @brief Returns the parameter set of the distribution. |
| 2922 | */ |
| 2923 | param_type |
| 2924 | param() const |
| 2925 | { return _M_param; } |
| 2926 | |
| 2927 | /** |
| 2928 | * @brief Sets the parameter set of the distribution. |
| 2929 | * @param __param The new parameter set of the distribution. |
| 2930 | */ |
| 2931 | void |
| 2932 | param(const param_type& __param) |
| 2933 | { _M_param = __param; } |
| 2934 | |
| 2935 | /** |
| 2936 | * @brief Returns the greatest lower bound value of the distribution. |
| 2937 | */ |
| 2938 | result_type |
| 2939 | min() const |
| 2940 | { return std::numeric_limits<result_type>::lowest(); } |
| 2941 | |
| 2942 | /** |
| 2943 | * @brief Returns the least upper bound value of the distribution. |
| 2944 | */ |
| 2945 | result_type |
| 2946 | max() const |
| 2947 | { return std::numeric_limits<result_type>::max(); } |
| 2948 | |
| 2949 | /** |
| 2950 | * @brief Generating functions. |
| 2951 | */ |
| 2952 | template<typename _UniformRandomNumberGenerator> |
| 2953 | result_type |
| 2954 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2955 | { return this->operator()(__urng, _M_param); } |
| 2956 | |
| 2957 | template<typename _UniformRandomNumberGenerator> |
| 2958 | result_type |
| 2959 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2960 | const param_type& __p); |
| 2961 | |
| 2962 | template<typename _ForwardIterator, |
| 2963 | typename _UniformRandomNumberGenerator> |
| 2964 | void |
| 2965 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2966 | _UniformRandomNumberGenerator& __urng) |
| 2967 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2968 | |
| 2969 | template<typename _ForwardIterator, |
| 2970 | typename _UniformRandomNumberGenerator> |
| 2971 | void |
| 2972 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2973 | _UniformRandomNumberGenerator& __urng, |
| 2974 | const param_type& __p) |
| 2975 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2976 | |
| 2977 | template<typename _UniformRandomNumberGenerator> |
| 2978 | void |
| 2979 | __generate(result_type* __f, result_type* __t, |
| 2980 | _UniformRandomNumberGenerator& __urng, |
| 2981 | const param_type& __p) |
| 2982 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2983 | |
| 2984 | /** |
| 2985 | * @brief Return true if two Cauchy distributions have |
| 2986 | * the same parameters. |
| 2987 | */ |
| 2988 | friend bool |
| 2989 | operator==(const cauchy_distribution& __d1, |
| 2990 | const cauchy_distribution& __d2) |
| 2991 | { return __d1._M_param == __d2._M_param; } |
| 2992 | |
| 2993 | private: |
| 2994 | template<typename _ForwardIterator, |
| 2995 | typename _UniformRandomNumberGenerator> |
| 2996 | void |
| 2997 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2998 | _UniformRandomNumberGenerator& __urng, |
| 2999 | const param_type& __p); |
| 3000 | |
| 3001 | param_type _M_param; |
| 3002 | }; |
| 3003 | |
| 3004 | /** |
| 3005 | * @brief Return true if two Cauchy distributions have |
| 3006 | * different parameters. |
| 3007 | */ |
| 3008 | template<typename _RealType> |
| 3009 | inline bool |
| 3010 | operator!=(const std::cauchy_distribution<_RealType>& __d1, |
| 3011 | const std::cauchy_distribution<_RealType>& __d2) |
| 3012 | { return !(__d1 == __d2); } |
| 3013 | |
| 3014 | /** |
| 3015 | * @brief Inserts a %cauchy_distribution random number distribution |
| 3016 | * @p __x into the output stream @p __os. |
| 3017 | * |
| 3018 | * @param __os An output stream. |
| 3019 | * @param __x A %cauchy_distribution random number distribution. |
| 3020 | * |
| 3021 | * @returns The output stream with the state of @p __x inserted or in |
| 3022 | * an error state. |
| 3023 | */ |
| 3024 | template<typename _RealType, typename _CharT, typename _Traits> |
| 3025 | std::basic_ostream<_CharT, _Traits>& |
| 3026 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3027 | const std::cauchy_distribution<_RealType>& __x); |
| 3028 | |
| 3029 | /** |
| 3030 | * @brief Extracts a %cauchy_distribution random number distribution |
| 3031 | * @p __x from the input stream @p __is. |
| 3032 | * |
| 3033 | * @param __is An input stream. |
| 3034 | * @param __x A %cauchy_distribution random number |
| 3035 | * generator engine. |
| 3036 | * |
| 3037 | * @returns The input stream with @p __x extracted or in an error state. |
| 3038 | */ |
| 3039 | template<typename _RealType, typename _CharT, typename _Traits> |
| 3040 | std::basic_istream<_CharT, _Traits>& |
| 3041 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3042 | std::cauchy_distribution<_RealType>& __x); |
| 3043 | |
| 3044 | |
| 3045 | /** |
| 3046 | * @brief A fisher_f_distribution random number distribution. |
| 3047 | * |
| 3048 | * The formula for the normal probability mass function is |
| 3049 | * @f[ |
| 3050 | * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} |
| 3051 | * (\frac{m}{n})^{m/2} x^{(m/2)-1} |
| 3052 | * (1 + \frac{mx}{n})^{-(m+n)/2} |
| 3053 | * @f] |
| 3054 | */ |
| 3055 | template<typename _RealType = double> |
| 3056 | class fisher_f_distribution |
| 3057 | { |
| 3058 | static_assert(std::is_floating_point<_RealType>::value, |
| 3059 | "result_type must be a floating point type" ); |
| 3060 | |
| 3061 | public: |
| 3062 | /** The type of the range of the distribution. */ |
| 3063 | typedef _RealType result_type; |
| 3064 | |
| 3065 | /** Parameter type. */ |
| 3066 | struct param_type |
| 3067 | { |
| 3068 | typedef fisher_f_distribution<_RealType> distribution_type; |
| 3069 | |
| 3070 | param_type() : param_type(1) { } |
| 3071 | |
| 3072 | explicit |
| 3073 | param_type(_RealType __m, _RealType __n = _RealType(1)) |
| 3074 | : _M_m(__m), _M_n(__n) |
| 3075 | { } |
| 3076 | |
| 3077 | _RealType |
| 3078 | m() const |
| 3079 | { return _M_m; } |
| 3080 | |
| 3081 | _RealType |
| 3082 | n() const |
| 3083 | { return _M_n; } |
| 3084 | |
| 3085 | friend bool |
| 3086 | operator==(const param_type& __p1, const param_type& __p2) |
| 3087 | { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; } |
| 3088 | |
| 3089 | friend bool |
| 3090 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3091 | { return !(__p1 == __p2); } |
| 3092 | |
| 3093 | private: |
| 3094 | _RealType _M_m; |
| 3095 | _RealType _M_n; |
| 3096 | }; |
| 3097 | |
| 3098 | fisher_f_distribution() : fisher_f_distribution(1.0) { } |
| 3099 | |
| 3100 | explicit |
| 3101 | fisher_f_distribution(_RealType __m, |
| 3102 | _RealType __n = _RealType(1)) |
| 3103 | : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2) |
| 3104 | { } |
| 3105 | |
| 3106 | explicit |
| 3107 | fisher_f_distribution(const param_type& __p) |
| 3108 | : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2) |
| 3109 | { } |
| 3110 | |
| 3111 | /** |
| 3112 | * @brief Resets the distribution state. |
| 3113 | */ |
| 3114 | void |
| 3115 | reset() |
| 3116 | { |
| 3117 | _M_gd_x.reset(); |
| 3118 | _M_gd_y.reset(); |
| 3119 | } |
| 3120 | |
| 3121 | /** |
| 3122 | * |
| 3123 | */ |
| 3124 | _RealType |
| 3125 | m() const |
| 3126 | { return _M_param.m(); } |
| 3127 | |
| 3128 | _RealType |
| 3129 | n() const |
| 3130 | { return _M_param.n(); } |
| 3131 | |
| 3132 | /** |
| 3133 | * @brief Returns the parameter set of the distribution. |
| 3134 | */ |
| 3135 | param_type |
| 3136 | param() const |
| 3137 | { return _M_param; } |
| 3138 | |
| 3139 | /** |
| 3140 | * @brief Sets the parameter set of the distribution. |
| 3141 | * @param __param The new parameter set of the distribution. |
| 3142 | */ |
| 3143 | void |
| 3144 | param(const param_type& __param) |
| 3145 | { _M_param = __param; } |
| 3146 | |
| 3147 | /** |
| 3148 | * @brief Returns the greatest lower bound value of the distribution. |
| 3149 | */ |
| 3150 | result_type |
| 3151 | min() const |
| 3152 | { return result_type(0); } |
| 3153 | |
| 3154 | /** |
| 3155 | * @brief Returns the least upper bound value of the distribution. |
| 3156 | */ |
| 3157 | result_type |
| 3158 | max() const |
| 3159 | { return std::numeric_limits<result_type>::max(); } |
| 3160 | |
| 3161 | /** |
| 3162 | * @brief Generating functions. |
| 3163 | */ |
| 3164 | template<typename _UniformRandomNumberGenerator> |
| 3165 | result_type |
| 3166 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3167 | { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); } |
| 3168 | |
| 3169 | template<typename _UniformRandomNumberGenerator> |
| 3170 | result_type |
| 3171 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3172 | const param_type& __p) |
| 3173 | { |
| 3174 | typedef typename std::gamma_distribution<result_type>::param_type |
| 3175 | param_type; |
| 3176 | return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n()) |
| 3177 | / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m())); |
| 3178 | } |
| 3179 | |
| 3180 | template<typename _ForwardIterator, |
| 3181 | typename _UniformRandomNumberGenerator> |
| 3182 | void |
| 3183 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3184 | _UniformRandomNumberGenerator& __urng) |
| 3185 | { this->__generate_impl(__f, __t, __urng); } |
| 3186 | |
| 3187 | template<typename _ForwardIterator, |
| 3188 | typename _UniformRandomNumberGenerator> |
| 3189 | void |
| 3190 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3191 | _UniformRandomNumberGenerator& __urng, |
| 3192 | const param_type& __p) |
| 3193 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3194 | |
| 3195 | template<typename _UniformRandomNumberGenerator> |
| 3196 | void |
| 3197 | __generate(result_type* __f, result_type* __t, |
| 3198 | _UniformRandomNumberGenerator& __urng) |
| 3199 | { this->__generate_impl(__f, __t, __urng); } |
| 3200 | |
| 3201 | template<typename _UniformRandomNumberGenerator> |
| 3202 | void |
| 3203 | __generate(result_type* __f, result_type* __t, |
| 3204 | _UniformRandomNumberGenerator& __urng, |
| 3205 | const param_type& __p) |
| 3206 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3207 | |
| 3208 | /** |
| 3209 | * @brief Return true if two Fisher f distributions have |
| 3210 | * the same parameters and the sequences that would |
| 3211 | * be generated are equal. |
| 3212 | */ |
| 3213 | friend bool |
| 3214 | operator==(const fisher_f_distribution& __d1, |
| 3215 | const fisher_f_distribution& __d2) |
| 3216 | { return (__d1._M_param == __d2._M_param |
| 3217 | && __d1._M_gd_x == __d2._M_gd_x |
| 3218 | && __d1._M_gd_y == __d2._M_gd_y); } |
| 3219 | |
| 3220 | /** |
| 3221 | * @brief Inserts a %fisher_f_distribution random number distribution |
| 3222 | * @p __x into the output stream @p __os. |
| 3223 | * |
| 3224 | * @param __os An output stream. |
| 3225 | * @param __x A %fisher_f_distribution random number distribution. |
| 3226 | * |
| 3227 | * @returns The output stream with the state of @p __x inserted or in |
| 3228 | * an error state. |
| 3229 | */ |
| 3230 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3231 | friend std::basic_ostream<_CharT, _Traits>& |
| 3232 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3233 | const std::fisher_f_distribution<_RealType1>& __x); |
| 3234 | |
| 3235 | /** |
| 3236 | * @brief Extracts a %fisher_f_distribution random number distribution |
| 3237 | * @p __x from the input stream @p __is. |
| 3238 | * |
| 3239 | * @param __is An input stream. |
| 3240 | * @param __x A %fisher_f_distribution random number |
| 3241 | * generator engine. |
| 3242 | * |
| 3243 | * @returns The input stream with @p __x extracted or in an error state. |
| 3244 | */ |
| 3245 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3246 | friend std::basic_istream<_CharT, _Traits>& |
| 3247 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3248 | std::fisher_f_distribution<_RealType1>& __x); |
| 3249 | |
| 3250 | private: |
| 3251 | template<typename _ForwardIterator, |
| 3252 | typename _UniformRandomNumberGenerator> |
| 3253 | void |
| 3254 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3255 | _UniformRandomNumberGenerator& __urng); |
| 3256 | |
| 3257 | template<typename _ForwardIterator, |
| 3258 | typename _UniformRandomNumberGenerator> |
| 3259 | void |
| 3260 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3261 | _UniformRandomNumberGenerator& __urng, |
| 3262 | const param_type& __p); |
| 3263 | |
| 3264 | param_type _M_param; |
| 3265 | |
| 3266 | std::gamma_distribution<result_type> _M_gd_x, _M_gd_y; |
| 3267 | }; |
| 3268 | |
| 3269 | /** |
| 3270 | * @brief Return true if two Fisher f distributions are different. |
| 3271 | */ |
| 3272 | template<typename _RealType> |
| 3273 | inline bool |
| 3274 | operator!=(const std::fisher_f_distribution<_RealType>& __d1, |
| 3275 | const std::fisher_f_distribution<_RealType>& __d2) |
| 3276 | { return !(__d1 == __d2); } |
| 3277 | |
| 3278 | /** |
| 3279 | * @brief A student_t_distribution random number distribution. |
| 3280 | * |
| 3281 | * The formula for the normal probability mass function is: |
| 3282 | * @f[ |
| 3283 | * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} |
| 3284 | * (1 + \frac{x^2}{n}) ^{-(n+1)/2} |
| 3285 | * @f] |
| 3286 | */ |
| 3287 | template<typename _RealType = double> |
| 3288 | class student_t_distribution |
| 3289 | { |
| 3290 | static_assert(std::is_floating_point<_RealType>::value, |
| 3291 | "result_type must be a floating point type" ); |
| 3292 | |
| 3293 | public: |
| 3294 | /** The type of the range of the distribution. */ |
| 3295 | typedef _RealType result_type; |
| 3296 | |
| 3297 | /** Parameter type. */ |
| 3298 | struct param_type |
| 3299 | { |
| 3300 | typedef student_t_distribution<_RealType> distribution_type; |
| 3301 | |
| 3302 | param_type() : param_type(1) { } |
| 3303 | |
| 3304 | explicit |
| 3305 | param_type(_RealType __n) |
| 3306 | : _M_n(__n) |
| 3307 | { } |
| 3308 | |
| 3309 | _RealType |
| 3310 | n() const |
| 3311 | { return _M_n; } |
| 3312 | |
| 3313 | friend bool |
| 3314 | operator==(const param_type& __p1, const param_type& __p2) |
| 3315 | { return __p1._M_n == __p2._M_n; } |
| 3316 | |
| 3317 | friend bool |
| 3318 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3319 | { return !(__p1 == __p2); } |
| 3320 | |
| 3321 | private: |
| 3322 | _RealType _M_n; |
| 3323 | }; |
| 3324 | |
| 3325 | student_t_distribution() : student_t_distribution(1.0) { } |
| 3326 | |
| 3327 | explicit |
| 3328 | student_t_distribution(_RealType __n) |
| 3329 | : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2) |
| 3330 | { } |
| 3331 | |
| 3332 | explicit |
| 3333 | student_t_distribution(const param_type& __p) |
| 3334 | : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2) |
| 3335 | { } |
| 3336 | |
| 3337 | /** |
| 3338 | * @brief Resets the distribution state. |
| 3339 | */ |
| 3340 | void |
| 3341 | reset() |
| 3342 | { |
| 3343 | _M_nd.reset(); |
| 3344 | _M_gd.reset(); |
| 3345 | } |
| 3346 | |
| 3347 | /** |
| 3348 | * |
| 3349 | */ |
| 3350 | _RealType |
| 3351 | n() const |
| 3352 | { return _M_param.n(); } |
| 3353 | |
| 3354 | /** |
| 3355 | * @brief Returns the parameter set of the distribution. |
| 3356 | */ |
| 3357 | param_type |
| 3358 | param() const |
| 3359 | { return _M_param; } |
| 3360 | |
| 3361 | /** |
| 3362 | * @brief Sets the parameter set of the distribution. |
| 3363 | * @param __param The new parameter set of the distribution. |
| 3364 | */ |
| 3365 | void |
| 3366 | param(const param_type& __param) |
| 3367 | { _M_param = __param; } |
| 3368 | |
| 3369 | /** |
| 3370 | * @brief Returns the greatest lower bound value of the distribution. |
| 3371 | */ |
| 3372 | result_type |
| 3373 | min() const |
| 3374 | { return std::numeric_limits<result_type>::lowest(); } |
| 3375 | |
| 3376 | /** |
| 3377 | * @brief Returns the least upper bound value of the distribution. |
| 3378 | */ |
| 3379 | result_type |
| 3380 | max() const |
| 3381 | { return std::numeric_limits<result_type>::max(); } |
| 3382 | |
| 3383 | /** |
| 3384 | * @brief Generating functions. |
| 3385 | */ |
| 3386 | template<typename _UniformRandomNumberGenerator> |
| 3387 | result_type |
| 3388 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3389 | { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); } |
| 3390 | |
| 3391 | template<typename _UniformRandomNumberGenerator> |
| 3392 | result_type |
| 3393 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3394 | const param_type& __p) |
| 3395 | { |
| 3396 | typedef typename std::gamma_distribution<result_type>::param_type |
| 3397 | param_type; |
| 3398 | |
| 3399 | const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2)); |
| 3400 | return _M_nd(__urng) * std::sqrt(__p.n() / __g); |
| 3401 | } |
| 3402 | |
| 3403 | template<typename _ForwardIterator, |
| 3404 | typename _UniformRandomNumberGenerator> |
| 3405 | void |
| 3406 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3407 | _UniformRandomNumberGenerator& __urng) |
| 3408 | { this->__generate_impl(__f, __t, __urng); } |
| 3409 | |
| 3410 | template<typename _ForwardIterator, |
| 3411 | typename _UniformRandomNumberGenerator> |
| 3412 | void |
| 3413 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3414 | _UniformRandomNumberGenerator& __urng, |
| 3415 | const param_type& __p) |
| 3416 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3417 | |
| 3418 | template<typename _UniformRandomNumberGenerator> |
| 3419 | void |
| 3420 | __generate(result_type* __f, result_type* __t, |
| 3421 | _UniformRandomNumberGenerator& __urng) |
| 3422 | { this->__generate_impl(__f, __t, __urng); } |
| 3423 | |
| 3424 | template<typename _UniformRandomNumberGenerator> |
| 3425 | void |
| 3426 | __generate(result_type* __f, result_type* __t, |
| 3427 | _UniformRandomNumberGenerator& __urng, |
| 3428 | const param_type& __p) |
| 3429 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3430 | |
| 3431 | /** |
| 3432 | * @brief Return true if two Student t distributions have |
| 3433 | * the same parameters and the sequences that would |
| 3434 | * be generated are equal. |
| 3435 | */ |
| 3436 | friend bool |
| 3437 | operator==(const student_t_distribution& __d1, |
| 3438 | const student_t_distribution& __d2) |
| 3439 | { return (__d1._M_param == __d2._M_param |
| 3440 | && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); } |
| 3441 | |
| 3442 | /** |
| 3443 | * @brief Inserts a %student_t_distribution random number distribution |
| 3444 | * @p __x into the output stream @p __os. |
| 3445 | * |
| 3446 | * @param __os An output stream. |
| 3447 | * @param __x A %student_t_distribution random number distribution. |
| 3448 | * |
| 3449 | * @returns The output stream with the state of @p __x inserted or in |
| 3450 | * an error state. |
| 3451 | */ |
| 3452 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3453 | friend std::basic_ostream<_CharT, _Traits>& |
| 3454 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3455 | const std::student_t_distribution<_RealType1>& __x); |
| 3456 | |
| 3457 | /** |
| 3458 | * @brief Extracts a %student_t_distribution random number distribution |
| 3459 | * @p __x from the input stream @p __is. |
| 3460 | * |
| 3461 | * @param __is An input stream. |
| 3462 | * @param __x A %student_t_distribution random number |
| 3463 | * generator engine. |
| 3464 | * |
| 3465 | * @returns The input stream with @p __x extracted or in an error state. |
| 3466 | */ |
| 3467 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3468 | friend std::basic_istream<_CharT, _Traits>& |
| 3469 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3470 | std::student_t_distribution<_RealType1>& __x); |
| 3471 | |
| 3472 | private: |
| 3473 | template<typename _ForwardIterator, |
| 3474 | typename _UniformRandomNumberGenerator> |
| 3475 | void |
| 3476 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3477 | _UniformRandomNumberGenerator& __urng); |
| 3478 | template<typename _ForwardIterator, |
| 3479 | typename _UniformRandomNumberGenerator> |
| 3480 | void |
| 3481 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3482 | _UniformRandomNumberGenerator& __urng, |
| 3483 | const param_type& __p); |
| 3484 | |
| 3485 | param_type _M_param; |
| 3486 | |
| 3487 | std::normal_distribution<result_type> _M_nd; |
| 3488 | std::gamma_distribution<result_type> _M_gd; |
| 3489 | }; |
| 3490 | |
| 3491 | /** |
| 3492 | * @brief Return true if two Student t distributions are different. |
| 3493 | */ |
| 3494 | template<typename _RealType> |
| 3495 | inline bool |
| 3496 | operator!=(const std::student_t_distribution<_RealType>& __d1, |
| 3497 | const std::student_t_distribution<_RealType>& __d2) |
| 3498 | { return !(__d1 == __d2); } |
| 3499 | |
| 3500 | |
| 3501 | /* @} */ // group random_distributions_normal |
| 3502 | |
| 3503 | /** |
| 3504 | * @addtogroup random_distributions_bernoulli Bernoulli Distributions |
| 3505 | * @ingroup random_distributions |
| 3506 | * @{ |
| 3507 | */ |
| 3508 | |
| 3509 | /** |
| 3510 | * @brief A Bernoulli random number distribution. |
| 3511 | * |
| 3512 | * Generates a sequence of true and false values with likelihood @f$p@f$ |
| 3513 | * that true will come up and @f$(1 - p)@f$ that false will appear. |
| 3514 | */ |
| 3515 | class bernoulli_distribution |
| 3516 | { |
| 3517 | public: |
| 3518 | /** The type of the range of the distribution. */ |
| 3519 | typedef bool result_type; |
| 3520 | |
| 3521 | /** Parameter type. */ |
| 3522 | struct param_type |
| 3523 | { |
| 3524 | typedef bernoulli_distribution distribution_type; |
| 3525 | |
| 3526 | param_type() : param_type(0.5) { } |
| 3527 | |
| 3528 | explicit |
| 3529 | param_type(double __p) |
| 3530 | : _M_p(__p) |
| 3531 | { |
| 3532 | __glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0)); |
| 3533 | } |
| 3534 | |
| 3535 | double |
| 3536 | p() const |
| 3537 | { return _M_p; } |
| 3538 | |
| 3539 | friend bool |
| 3540 | operator==(const param_type& __p1, const param_type& __p2) |
| 3541 | { return __p1._M_p == __p2._M_p; } |
| 3542 | |
| 3543 | friend bool |
| 3544 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3545 | { return !(__p1 == __p2); } |
| 3546 | |
| 3547 | private: |
| 3548 | double _M_p; |
| 3549 | }; |
| 3550 | |
| 3551 | public: |
| 3552 | /** |
| 3553 | * @brief Constructs a Bernoulli distribution with likelihood 0.5. |
| 3554 | */ |
| 3555 | bernoulli_distribution() : bernoulli_distribution(0.5) { } |
| 3556 | |
| 3557 | /** |
| 3558 | * @brief Constructs a Bernoulli distribution with likelihood @p p. |
| 3559 | * |
| 3560 | * @param __p [IN] The likelihood of a true result being returned. |
| 3561 | * Must be in the interval @f$[0, 1]@f$. |
| 3562 | */ |
| 3563 | explicit |
| 3564 | bernoulli_distribution(double __p) |
| 3565 | : _M_param(__p) |
| 3566 | { } |
| 3567 | |
| 3568 | explicit |
| 3569 | bernoulli_distribution(const param_type& __p) |
| 3570 | : _M_param(__p) |
| 3571 | { } |
| 3572 | |
| 3573 | /** |
| 3574 | * @brief Resets the distribution state. |
| 3575 | * |
| 3576 | * Does nothing for a Bernoulli distribution. |
| 3577 | */ |
| 3578 | void |
| 3579 | reset() { } |
| 3580 | |
| 3581 | /** |
| 3582 | * @brief Returns the @p p parameter of the distribution. |
| 3583 | */ |
| 3584 | double |
| 3585 | p() const |
| 3586 | { return _M_param.p(); } |
| 3587 | |
| 3588 | /** |
| 3589 | * @brief Returns the parameter set of the distribution. |
| 3590 | */ |
| 3591 | param_type |
| 3592 | param() const |
| 3593 | { return _M_param; } |
| 3594 | |
| 3595 | /** |
| 3596 | * @brief Sets the parameter set of the distribution. |
| 3597 | * @param __param The new parameter set of the distribution. |
| 3598 | */ |
| 3599 | void |
| 3600 | param(const param_type& __param) |
| 3601 | { _M_param = __param; } |
| 3602 | |
| 3603 | /** |
| 3604 | * @brief Returns the greatest lower bound value of the distribution. |
| 3605 | */ |
| 3606 | result_type |
| 3607 | min() const |
| 3608 | { return std::numeric_limits<result_type>::min(); } |
| 3609 | |
| 3610 | /** |
| 3611 | * @brief Returns the least upper bound value of the distribution. |
| 3612 | */ |
| 3613 | result_type |
| 3614 | max() const |
| 3615 | { return std::numeric_limits<result_type>::max(); } |
| 3616 | |
| 3617 | /** |
| 3618 | * @brief Generating functions. |
| 3619 | */ |
| 3620 | template<typename _UniformRandomNumberGenerator> |
| 3621 | result_type |
| 3622 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3623 | { return this->operator()(__urng, _M_param); } |
| 3624 | |
| 3625 | template<typename _UniformRandomNumberGenerator> |
| 3626 | result_type |
| 3627 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3628 | const param_type& __p) |
| 3629 | { |
| 3630 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 3631 | __aurng(__urng); |
| 3632 | if ((__aurng() - __aurng.min()) |
| 3633 | < __p.p() * (__aurng.max() - __aurng.min())) |
| 3634 | return true; |
| 3635 | return false; |
| 3636 | } |
| 3637 | |
| 3638 | template<typename _ForwardIterator, |
| 3639 | typename _UniformRandomNumberGenerator> |
| 3640 | void |
| 3641 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3642 | _UniformRandomNumberGenerator& __urng) |
| 3643 | { this->__generate(__f, __t, __urng, _M_param); } |
| 3644 | |
| 3645 | template<typename _ForwardIterator, |
| 3646 | typename _UniformRandomNumberGenerator> |
| 3647 | void |
| 3648 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3649 | _UniformRandomNumberGenerator& __urng, const param_type& __p) |
| 3650 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3651 | |
| 3652 | template<typename _UniformRandomNumberGenerator> |
| 3653 | void |
| 3654 | __generate(result_type* __f, result_type* __t, |
| 3655 | _UniformRandomNumberGenerator& __urng, |
| 3656 | const param_type& __p) |
| 3657 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3658 | |
| 3659 | /** |
| 3660 | * @brief Return true if two Bernoulli distributions have |
| 3661 | * the same parameters. |
| 3662 | */ |
| 3663 | friend bool |
| 3664 | operator==(const bernoulli_distribution& __d1, |
| 3665 | const bernoulli_distribution& __d2) |
| 3666 | { return __d1._M_param == __d2._M_param; } |
| 3667 | |
| 3668 | private: |
| 3669 | template<typename _ForwardIterator, |
| 3670 | typename _UniformRandomNumberGenerator> |
| 3671 | void |
| 3672 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3673 | _UniformRandomNumberGenerator& __urng, |
| 3674 | const param_type& __p); |
| 3675 | |
| 3676 | param_type _M_param; |
| 3677 | }; |
| 3678 | |
| 3679 | /** |
| 3680 | * @brief Return true if two Bernoulli distributions have |
| 3681 | * different parameters. |
| 3682 | */ |
| 3683 | inline bool |
| 3684 | operator!=(const std::bernoulli_distribution& __d1, |
| 3685 | const std::bernoulli_distribution& __d2) |
| 3686 | { return !(__d1 == __d2); } |
| 3687 | |
| 3688 | /** |
| 3689 | * @brief Inserts a %bernoulli_distribution random number distribution |
| 3690 | * @p __x into the output stream @p __os. |
| 3691 | * |
| 3692 | * @param __os An output stream. |
| 3693 | * @param __x A %bernoulli_distribution random number distribution. |
| 3694 | * |
| 3695 | * @returns The output stream with the state of @p __x inserted or in |
| 3696 | * an error state. |
| 3697 | */ |
| 3698 | template<typename _CharT, typename _Traits> |
| 3699 | std::basic_ostream<_CharT, _Traits>& |
| 3700 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3701 | const std::bernoulli_distribution& __x); |
| 3702 | |
| 3703 | /** |
| 3704 | * @brief Extracts a %bernoulli_distribution random number distribution |
| 3705 | * @p __x from the input stream @p __is. |
| 3706 | * |
| 3707 | * @param __is An input stream. |
| 3708 | * @param __x A %bernoulli_distribution random number generator engine. |
| 3709 | * |
| 3710 | * @returns The input stream with @p __x extracted or in an error state. |
| 3711 | */ |
| 3712 | template<typename _CharT, typename _Traits> |
| 3713 | std::basic_istream<_CharT, _Traits>& |
| 3714 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3715 | std::bernoulli_distribution& __x) |
| 3716 | { |
| 3717 | double __p; |
| 3718 | if (__is >> __p) |
| 3719 | __x.param(bernoulli_distribution::param_type(__p)); |
| 3720 | return __is; |
| 3721 | } |
| 3722 | |
| 3723 | |
| 3724 | /** |
| 3725 | * @brief A discrete binomial random number distribution. |
| 3726 | * |
| 3727 | * The formula for the binomial probability density function is |
| 3728 | * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
| 3729 | * and @f$p@f$ are the parameters of the distribution. |
| 3730 | */ |
| 3731 | template<typename _IntType = int> |
| 3732 | class binomial_distribution |
| 3733 | { |
| 3734 | static_assert(std::is_integral<_IntType>::value, |
| 3735 | "result_type must be an integral type" ); |
| 3736 | |
| 3737 | public: |
| 3738 | /** The type of the range of the distribution. */ |
| 3739 | typedef _IntType result_type; |
| 3740 | |
| 3741 | /** Parameter type. */ |
| 3742 | struct param_type |
| 3743 | { |
| 3744 | typedef binomial_distribution<_IntType> distribution_type; |
| 3745 | friend class binomial_distribution<_IntType>; |
| 3746 | |
| 3747 | param_type() : param_type(1) { } |
| 3748 | |
| 3749 | explicit |
| 3750 | param_type(_IntType __t, double __p = 0.5) |
| 3751 | : _M_t(__t), _M_p(__p) |
| 3752 | { |
| 3753 | __glibcxx_assert((_M_t >= _IntType(0)) |
| 3754 | && (_M_p >= 0.0) |
| 3755 | && (_M_p <= 1.0)); |
| 3756 | _M_initialize(); |
| 3757 | } |
| 3758 | |
| 3759 | _IntType |
| 3760 | t() const |
| 3761 | { return _M_t; } |
| 3762 | |
| 3763 | double |
| 3764 | p() const |
| 3765 | { return _M_p; } |
| 3766 | |
| 3767 | friend bool |
| 3768 | operator==(const param_type& __p1, const param_type& __p2) |
| 3769 | { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; } |
| 3770 | |
| 3771 | friend bool |
| 3772 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3773 | { return !(__p1 == __p2); } |
| 3774 | |
| 3775 | private: |
| 3776 | void |
| 3777 | _M_initialize(); |
| 3778 | |
| 3779 | _IntType _M_t; |
| 3780 | double _M_p; |
| 3781 | |
| 3782 | double _M_q; |
| 3783 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 3784 | double _M_d1, _M_d2, _M_s1, _M_s2, _M_c, |
| 3785 | _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p; |
| 3786 | #endif |
| 3787 | bool _M_easy; |
| 3788 | }; |
| 3789 | |
| 3790 | // constructors and member functions |
| 3791 | |
| 3792 | binomial_distribution() : binomial_distribution(1) { } |
| 3793 | |
| 3794 | explicit |
| 3795 | binomial_distribution(_IntType __t, double __p = 0.5) |
| 3796 | : _M_param(__t, __p), _M_nd() |
| 3797 | { } |
| 3798 | |
| 3799 | explicit |
| 3800 | binomial_distribution(const param_type& __p) |
| 3801 | : _M_param(__p), _M_nd() |
| 3802 | { } |
| 3803 | |
| 3804 | /** |
| 3805 | * @brief Resets the distribution state. |
| 3806 | */ |
| 3807 | void |
| 3808 | reset() |
| 3809 | { _M_nd.reset(); } |
| 3810 | |
| 3811 | /** |
| 3812 | * @brief Returns the distribution @p t parameter. |
| 3813 | */ |
| 3814 | _IntType |
| 3815 | t() const |
| 3816 | { return _M_param.t(); } |
| 3817 | |
| 3818 | /** |
| 3819 | * @brief Returns the distribution @p p parameter. |
| 3820 | */ |
| 3821 | double |
| 3822 | p() const |
| 3823 | { return _M_param.p(); } |
| 3824 | |
| 3825 | /** |
| 3826 | * @brief Returns the parameter set of the distribution. |
| 3827 | */ |
| 3828 | param_type |
| 3829 | param() const |
| 3830 | { return _M_param; } |
| 3831 | |
| 3832 | /** |
| 3833 | * @brief Sets the parameter set of the distribution. |
| 3834 | * @param __param The new parameter set of the distribution. |
| 3835 | */ |
| 3836 | void |
| 3837 | param(const param_type& __param) |
| 3838 | { _M_param = __param; } |
| 3839 | |
| 3840 | /** |
| 3841 | * @brief Returns the greatest lower bound value of the distribution. |
| 3842 | */ |
| 3843 | result_type |
| 3844 | min() const |
| 3845 | { return 0; } |
| 3846 | |
| 3847 | /** |
| 3848 | * @brief Returns the least upper bound value of the distribution. |
| 3849 | */ |
| 3850 | result_type |
| 3851 | max() const |
| 3852 | { return _M_param.t(); } |
| 3853 | |
| 3854 | /** |
| 3855 | * @brief Generating functions. |
| 3856 | */ |
| 3857 | template<typename _UniformRandomNumberGenerator> |
| 3858 | result_type |
| 3859 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3860 | { return this->operator()(__urng, _M_param); } |
| 3861 | |
| 3862 | template<typename _UniformRandomNumberGenerator> |
| 3863 | result_type |
| 3864 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3865 | const param_type& __p); |
| 3866 | |
| 3867 | template<typename _ForwardIterator, |
| 3868 | typename _UniformRandomNumberGenerator> |
| 3869 | void |
| 3870 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3871 | _UniformRandomNumberGenerator& __urng) |
| 3872 | { this->__generate(__f, __t, __urng, _M_param); } |
| 3873 | |
| 3874 | template<typename _ForwardIterator, |
| 3875 | typename _UniformRandomNumberGenerator> |
| 3876 | void |
| 3877 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3878 | _UniformRandomNumberGenerator& __urng, |
| 3879 | const param_type& __p) |
| 3880 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3881 | |
| 3882 | template<typename _UniformRandomNumberGenerator> |
| 3883 | void |
| 3884 | __generate(result_type* __f, result_type* __t, |
| 3885 | _UniformRandomNumberGenerator& __urng, |
| 3886 | const param_type& __p) |
| 3887 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3888 | |
| 3889 | /** |
| 3890 | * @brief Return true if two binomial distributions have |
| 3891 | * the same parameters and the sequences that would |
| 3892 | * be generated are equal. |
| 3893 | */ |
| 3894 | friend bool |
| 3895 | operator==(const binomial_distribution& __d1, |
| 3896 | const binomial_distribution& __d2) |
| 3897 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
| 3898 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
| 3899 | #else |
| 3900 | { return __d1._M_param == __d2._M_param; } |
| 3901 | #endif |
| 3902 | |
| 3903 | /** |
| 3904 | * @brief Inserts a %binomial_distribution random number distribution |
| 3905 | * @p __x into the output stream @p __os. |
| 3906 | * |
| 3907 | * @param __os An output stream. |
| 3908 | * @param __x A %binomial_distribution random number distribution. |
| 3909 | * |
| 3910 | * @returns The output stream with the state of @p __x inserted or in |
| 3911 | * an error state. |
| 3912 | */ |
| 3913 | template<typename _IntType1, |
| 3914 | typename _CharT, typename _Traits> |
| 3915 | friend std::basic_ostream<_CharT, _Traits>& |
| 3916 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3917 | const std::binomial_distribution<_IntType1>& __x); |
| 3918 | |
| 3919 | /** |
| 3920 | * @brief Extracts a %binomial_distribution random number distribution |
| 3921 | * @p __x from the input stream @p __is. |
| 3922 | * |
| 3923 | * @param __is An input stream. |
| 3924 | * @param __x A %binomial_distribution random number generator engine. |
| 3925 | * |
| 3926 | * @returns The input stream with @p __x extracted or in an error |
| 3927 | * state. |
| 3928 | */ |
| 3929 | template<typename _IntType1, |
| 3930 | typename _CharT, typename _Traits> |
| 3931 | friend std::basic_istream<_CharT, _Traits>& |
| 3932 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3933 | std::binomial_distribution<_IntType1>& __x); |
| 3934 | |
| 3935 | private: |
| 3936 | template<typename _ForwardIterator, |
| 3937 | typename _UniformRandomNumberGenerator> |
| 3938 | void |
| 3939 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3940 | _UniformRandomNumberGenerator& __urng, |
| 3941 | const param_type& __p); |
| 3942 | |
| 3943 | template<typename _UniformRandomNumberGenerator> |
| 3944 | result_type |
| 3945 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
| 3946 | _IntType __t, double __q); |
| 3947 | |
| 3948 | param_type _M_param; |
| 3949 | |
| 3950 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
| 3951 | std::normal_distribution<double> _M_nd; |
| 3952 | }; |
| 3953 | |
| 3954 | /** |
| 3955 | * @brief Return true if two binomial distributions are different. |
| 3956 | */ |
| 3957 | template<typename _IntType> |
| 3958 | inline bool |
| 3959 | operator!=(const std::binomial_distribution<_IntType>& __d1, |
| 3960 | const std::binomial_distribution<_IntType>& __d2) |
| 3961 | { return !(__d1 == __d2); } |
| 3962 | |
| 3963 | |
| 3964 | /** |
| 3965 | * @brief A discrete geometric random number distribution. |
| 3966 | * |
| 3967 | * The formula for the geometric probability density function is |
| 3968 | * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the |
| 3969 | * distribution. |
| 3970 | */ |
| 3971 | template<typename _IntType = int> |
| 3972 | class geometric_distribution |
| 3973 | { |
| 3974 | static_assert(std::is_integral<_IntType>::value, |
| 3975 | "result_type must be an integral type" ); |
| 3976 | |
| 3977 | public: |
| 3978 | /** The type of the range of the distribution. */ |
| 3979 | typedef _IntType result_type; |
| 3980 | |
| 3981 | /** Parameter type. */ |
| 3982 | struct param_type |
| 3983 | { |
| 3984 | typedef geometric_distribution<_IntType> distribution_type; |
| 3985 | friend class geometric_distribution<_IntType>; |
| 3986 | |
| 3987 | param_type() : param_type(0.5) { } |
| 3988 | |
| 3989 | explicit |
| 3990 | param_type(double __p) |
| 3991 | : _M_p(__p) |
| 3992 | { |
| 3993 | __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0)); |
| 3994 | _M_initialize(); |
| 3995 | } |
| 3996 | |
| 3997 | double |
| 3998 | p() const |
| 3999 | { return _M_p; } |
| 4000 | |
| 4001 | friend bool |
| 4002 | operator==(const param_type& __p1, const param_type& __p2) |
| 4003 | { return __p1._M_p == __p2._M_p; } |
| 4004 | |
| 4005 | friend bool |
| 4006 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4007 | { return !(__p1 == __p2); } |
| 4008 | |
| 4009 | private: |
| 4010 | void |
| 4011 | _M_initialize() |
| 4012 | { _M_log_1_p = std::log(1.0 - _M_p); } |
| 4013 | |
| 4014 | double _M_p; |
| 4015 | |
| 4016 | double _M_log_1_p; |
| 4017 | }; |
| 4018 | |
| 4019 | // constructors and member functions |
| 4020 | |
| 4021 | geometric_distribution() : geometric_distribution(0.5) { } |
| 4022 | |
| 4023 | explicit |
| 4024 | geometric_distribution(double __p) |
| 4025 | : _M_param(__p) |
| 4026 | { } |
| 4027 | |
| 4028 | explicit |
| 4029 | geometric_distribution(const param_type& __p) |
| 4030 | : _M_param(__p) |
| 4031 | { } |
| 4032 | |
| 4033 | /** |
| 4034 | * @brief Resets the distribution state. |
| 4035 | * |
| 4036 | * Does nothing for the geometric distribution. |
| 4037 | */ |
| 4038 | void |
| 4039 | reset() { } |
| 4040 | |
| 4041 | /** |
| 4042 | * @brief Returns the distribution parameter @p p. |
| 4043 | */ |
| 4044 | double |
| 4045 | p() const |
| 4046 | { return _M_param.p(); } |
| 4047 | |
| 4048 | /** |
| 4049 | * @brief Returns the parameter set of the distribution. |
| 4050 | */ |
| 4051 | param_type |
| 4052 | param() const |
| 4053 | { return _M_param; } |
| 4054 | |
| 4055 | /** |
| 4056 | * @brief Sets the parameter set of the distribution. |
| 4057 | * @param __param The new parameter set of the distribution. |
| 4058 | */ |
| 4059 | void |
| 4060 | param(const param_type& __param) |
| 4061 | { _M_param = __param; } |
| 4062 | |
| 4063 | /** |
| 4064 | * @brief Returns the greatest lower bound value of the distribution. |
| 4065 | */ |
| 4066 | result_type |
| 4067 | min() const |
| 4068 | { return 0; } |
| 4069 | |
| 4070 | /** |
| 4071 | * @brief Returns the least upper bound value of the distribution. |
| 4072 | */ |
| 4073 | result_type |
| 4074 | max() const |
| 4075 | { return std::numeric_limits<result_type>::max(); } |
| 4076 | |
| 4077 | /** |
| 4078 | * @brief Generating functions. |
| 4079 | */ |
| 4080 | template<typename _UniformRandomNumberGenerator> |
| 4081 | result_type |
| 4082 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4083 | { return this->operator()(__urng, _M_param); } |
| 4084 | |
| 4085 | template<typename _UniformRandomNumberGenerator> |
| 4086 | result_type |
| 4087 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4088 | const param_type& __p); |
| 4089 | |
| 4090 | template<typename _ForwardIterator, |
| 4091 | typename _UniformRandomNumberGenerator> |
| 4092 | void |
| 4093 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4094 | _UniformRandomNumberGenerator& __urng) |
| 4095 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4096 | |
| 4097 | template<typename _ForwardIterator, |
| 4098 | typename _UniformRandomNumberGenerator> |
| 4099 | void |
| 4100 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4101 | _UniformRandomNumberGenerator& __urng, |
| 4102 | const param_type& __p) |
| 4103 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4104 | |
| 4105 | template<typename _UniformRandomNumberGenerator> |
| 4106 | void |
| 4107 | __generate(result_type* __f, result_type* __t, |
| 4108 | _UniformRandomNumberGenerator& __urng, |
| 4109 | const param_type& __p) |
| 4110 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4111 | |
| 4112 | /** |
| 4113 | * @brief Return true if two geometric distributions have |
| 4114 | * the same parameters. |
| 4115 | */ |
| 4116 | friend bool |
| 4117 | operator==(const geometric_distribution& __d1, |
| 4118 | const geometric_distribution& __d2) |
| 4119 | { return __d1._M_param == __d2._M_param; } |
| 4120 | |
| 4121 | private: |
| 4122 | template<typename _ForwardIterator, |
| 4123 | typename _UniformRandomNumberGenerator> |
| 4124 | void |
| 4125 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4126 | _UniformRandomNumberGenerator& __urng, |
| 4127 | const param_type& __p); |
| 4128 | |
| 4129 | param_type _M_param; |
| 4130 | }; |
| 4131 | |
| 4132 | /** |
| 4133 | * @brief Return true if two geometric distributions have |
| 4134 | * different parameters. |
| 4135 | */ |
| 4136 | template<typename _IntType> |
| 4137 | inline bool |
| 4138 | operator!=(const std::geometric_distribution<_IntType>& __d1, |
| 4139 | const std::geometric_distribution<_IntType>& __d2) |
| 4140 | { return !(__d1 == __d2); } |
| 4141 | |
| 4142 | /** |
| 4143 | * @brief Inserts a %geometric_distribution random number distribution |
| 4144 | * @p __x into the output stream @p __os. |
| 4145 | * |
| 4146 | * @param __os An output stream. |
| 4147 | * @param __x A %geometric_distribution random number distribution. |
| 4148 | * |
| 4149 | * @returns The output stream with the state of @p __x inserted or in |
| 4150 | * an error state. |
| 4151 | */ |
| 4152 | template<typename _IntType, |
| 4153 | typename _CharT, typename _Traits> |
| 4154 | std::basic_ostream<_CharT, _Traits>& |
| 4155 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4156 | const std::geometric_distribution<_IntType>& __x); |
| 4157 | |
| 4158 | /** |
| 4159 | * @brief Extracts a %geometric_distribution random number distribution |
| 4160 | * @p __x from the input stream @p __is. |
| 4161 | * |
| 4162 | * @param __is An input stream. |
| 4163 | * @param __x A %geometric_distribution random number generator engine. |
| 4164 | * |
| 4165 | * @returns The input stream with @p __x extracted or in an error state. |
| 4166 | */ |
| 4167 | template<typename _IntType, |
| 4168 | typename _CharT, typename _Traits> |
| 4169 | std::basic_istream<_CharT, _Traits>& |
| 4170 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4171 | std::geometric_distribution<_IntType>& __x); |
| 4172 | |
| 4173 | |
| 4174 | /** |
| 4175 | * @brief A negative_binomial_distribution random number distribution. |
| 4176 | * |
| 4177 | * The formula for the negative binomial probability mass function is |
| 4178 | * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
| 4179 | * and @f$p@f$ are the parameters of the distribution. |
| 4180 | */ |
| 4181 | template<typename _IntType = int> |
| 4182 | class negative_binomial_distribution |
| 4183 | { |
| 4184 | static_assert(std::is_integral<_IntType>::value, |
| 4185 | "result_type must be an integral type" ); |
| 4186 | |
| 4187 | public: |
| 4188 | /** The type of the range of the distribution. */ |
| 4189 | typedef _IntType result_type; |
| 4190 | |
| 4191 | /** Parameter type. */ |
| 4192 | struct param_type |
| 4193 | { |
| 4194 | typedef negative_binomial_distribution<_IntType> distribution_type; |
| 4195 | |
| 4196 | param_type() : param_type(1) { } |
| 4197 | |
| 4198 | explicit |
| 4199 | param_type(_IntType __k, double __p = 0.5) |
| 4200 | : _M_k(__k), _M_p(__p) |
| 4201 | { |
| 4202 | __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0)); |
| 4203 | } |
| 4204 | |
| 4205 | _IntType |
| 4206 | k() const |
| 4207 | { return _M_k; } |
| 4208 | |
| 4209 | double |
| 4210 | p() const |
| 4211 | { return _M_p; } |
| 4212 | |
| 4213 | friend bool |
| 4214 | operator==(const param_type& __p1, const param_type& __p2) |
| 4215 | { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; } |
| 4216 | |
| 4217 | friend bool |
| 4218 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4219 | { return !(__p1 == __p2); } |
| 4220 | |
| 4221 | private: |
| 4222 | _IntType _M_k; |
| 4223 | double _M_p; |
| 4224 | }; |
| 4225 | |
| 4226 | negative_binomial_distribution() : negative_binomial_distribution(1) { } |
| 4227 | |
| 4228 | explicit |
| 4229 | negative_binomial_distribution(_IntType __k, double __p = 0.5) |
| 4230 | : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p) |
| 4231 | { } |
| 4232 | |
| 4233 | explicit |
| 4234 | negative_binomial_distribution(const param_type& __p) |
| 4235 | : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p()) |
| 4236 | { } |
| 4237 | |
| 4238 | /** |
| 4239 | * @brief Resets the distribution state. |
| 4240 | */ |
| 4241 | void |
| 4242 | reset() |
| 4243 | { _M_gd.reset(); } |
| 4244 | |
| 4245 | /** |
| 4246 | * @brief Return the @f$k@f$ parameter of the distribution. |
| 4247 | */ |
| 4248 | _IntType |
| 4249 | k() const |
| 4250 | { return _M_param.k(); } |
| 4251 | |
| 4252 | /** |
| 4253 | * @brief Return the @f$p@f$ parameter of the distribution. |
| 4254 | */ |
| 4255 | double |
| 4256 | p() const |
| 4257 | { return _M_param.p(); } |
| 4258 | |
| 4259 | /** |
| 4260 | * @brief Returns the parameter set of the distribution. |
| 4261 | */ |
| 4262 | param_type |
| 4263 | param() const |
| 4264 | { return _M_param; } |
| 4265 | |
| 4266 | /** |
| 4267 | * @brief Sets the parameter set of the distribution. |
| 4268 | * @param __param The new parameter set of the distribution. |
| 4269 | */ |
| 4270 | void |
| 4271 | param(const param_type& __param) |
| 4272 | { _M_param = __param; } |
| 4273 | |
| 4274 | /** |
| 4275 | * @brief Returns the greatest lower bound value of the distribution. |
| 4276 | */ |
| 4277 | result_type |
| 4278 | min() const |
| 4279 | { return result_type(0); } |
| 4280 | |
| 4281 | /** |
| 4282 | * @brief Returns the least upper bound value of the distribution. |
| 4283 | */ |
| 4284 | result_type |
| 4285 | max() const |
| 4286 | { return std::numeric_limits<result_type>::max(); } |
| 4287 | |
| 4288 | /** |
| 4289 | * @brief Generating functions. |
| 4290 | */ |
| 4291 | template<typename _UniformRandomNumberGenerator> |
| 4292 | result_type |
| 4293 | operator()(_UniformRandomNumberGenerator& __urng); |
| 4294 | |
| 4295 | template<typename _UniformRandomNumberGenerator> |
| 4296 | result_type |
| 4297 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4298 | const param_type& __p); |
| 4299 | |
| 4300 | template<typename _ForwardIterator, |
| 4301 | typename _UniformRandomNumberGenerator> |
| 4302 | void |
| 4303 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4304 | _UniformRandomNumberGenerator& __urng) |
| 4305 | { this->__generate_impl(__f, __t, __urng); } |
| 4306 | |
| 4307 | template<typename _ForwardIterator, |
| 4308 | typename _UniformRandomNumberGenerator> |
| 4309 | void |
| 4310 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4311 | _UniformRandomNumberGenerator& __urng, |
| 4312 | const param_type& __p) |
| 4313 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4314 | |
| 4315 | template<typename _UniformRandomNumberGenerator> |
| 4316 | void |
| 4317 | __generate(result_type* __f, result_type* __t, |
| 4318 | _UniformRandomNumberGenerator& __urng) |
| 4319 | { this->__generate_impl(__f, __t, __urng); } |
| 4320 | |
| 4321 | template<typename _UniformRandomNumberGenerator> |
| 4322 | void |
| 4323 | __generate(result_type* __f, result_type* __t, |
| 4324 | _UniformRandomNumberGenerator& __urng, |
| 4325 | const param_type& __p) |
| 4326 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4327 | |
| 4328 | /** |
| 4329 | * @brief Return true if two negative binomial distributions have |
| 4330 | * the same parameters and the sequences that would be |
| 4331 | * generated are equal. |
| 4332 | */ |
| 4333 | friend bool |
| 4334 | operator==(const negative_binomial_distribution& __d1, |
| 4335 | const negative_binomial_distribution& __d2) |
| 4336 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
| 4337 | |
| 4338 | /** |
| 4339 | * @brief Inserts a %negative_binomial_distribution random |
| 4340 | * number distribution @p __x into the output stream @p __os. |
| 4341 | * |
| 4342 | * @param __os An output stream. |
| 4343 | * @param __x A %negative_binomial_distribution random number |
| 4344 | * distribution. |
| 4345 | * |
| 4346 | * @returns The output stream with the state of @p __x inserted or in |
| 4347 | * an error state. |
| 4348 | */ |
| 4349 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4350 | friend std::basic_ostream<_CharT, _Traits>& |
| 4351 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4352 | const std::negative_binomial_distribution<_IntType1>& __x); |
| 4353 | |
| 4354 | /** |
| 4355 | * @brief Extracts a %negative_binomial_distribution random number |
| 4356 | * distribution @p __x from the input stream @p __is. |
| 4357 | * |
| 4358 | * @param __is An input stream. |
| 4359 | * @param __x A %negative_binomial_distribution random number |
| 4360 | * generator engine. |
| 4361 | * |
| 4362 | * @returns The input stream with @p __x extracted or in an error state. |
| 4363 | */ |
| 4364 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4365 | friend std::basic_istream<_CharT, _Traits>& |
| 4366 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4367 | std::negative_binomial_distribution<_IntType1>& __x); |
| 4368 | |
| 4369 | private: |
| 4370 | template<typename _ForwardIterator, |
| 4371 | typename _UniformRandomNumberGenerator> |
| 4372 | void |
| 4373 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4374 | _UniformRandomNumberGenerator& __urng); |
| 4375 | template<typename _ForwardIterator, |
| 4376 | typename _UniformRandomNumberGenerator> |
| 4377 | void |
| 4378 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4379 | _UniformRandomNumberGenerator& __urng, |
| 4380 | const param_type& __p); |
| 4381 | |
| 4382 | param_type _M_param; |
| 4383 | |
| 4384 | std::gamma_distribution<double> _M_gd; |
| 4385 | }; |
| 4386 | |
| 4387 | /** |
| 4388 | * @brief Return true if two negative binomial distributions are different. |
| 4389 | */ |
| 4390 | template<typename _IntType> |
| 4391 | inline bool |
| 4392 | operator!=(const std::negative_binomial_distribution<_IntType>& __d1, |
| 4393 | const std::negative_binomial_distribution<_IntType>& __d2) |
| 4394 | { return !(__d1 == __d2); } |
| 4395 | |
| 4396 | |
| 4397 | /* @} */ // group random_distributions_bernoulli |
| 4398 | |
| 4399 | /** |
| 4400 | * @addtogroup random_distributions_poisson Poisson Distributions |
| 4401 | * @ingroup random_distributions |
| 4402 | * @{ |
| 4403 | */ |
| 4404 | |
| 4405 | /** |
| 4406 | * @brief A discrete Poisson random number distribution. |
| 4407 | * |
| 4408 | * The formula for the Poisson probability density function is |
| 4409 | * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the |
| 4410 | * parameter of the distribution. |
| 4411 | */ |
| 4412 | template<typename _IntType = int> |
| 4413 | class poisson_distribution |
| 4414 | { |
| 4415 | static_assert(std::is_integral<_IntType>::value, |
| 4416 | "result_type must be an integral type" ); |
| 4417 | |
| 4418 | public: |
| 4419 | /** The type of the range of the distribution. */ |
| 4420 | typedef _IntType result_type; |
| 4421 | |
| 4422 | /** Parameter type. */ |
| 4423 | struct param_type |
| 4424 | { |
| 4425 | typedef poisson_distribution<_IntType> distribution_type; |
| 4426 | friend class poisson_distribution<_IntType>; |
| 4427 | |
| 4428 | param_type() : param_type(1.0) { } |
| 4429 | |
| 4430 | explicit |
| 4431 | param_type(double __mean) |
| 4432 | : _M_mean(__mean) |
| 4433 | { |
| 4434 | __glibcxx_assert(_M_mean > 0.0); |
| 4435 | _M_initialize(); |
| 4436 | } |
| 4437 | |
| 4438 | double |
| 4439 | mean() const |
| 4440 | { return _M_mean; } |
| 4441 | |
| 4442 | friend bool |
| 4443 | operator==(const param_type& __p1, const param_type& __p2) |
| 4444 | { return __p1._M_mean == __p2._M_mean; } |
| 4445 | |
| 4446 | friend bool |
| 4447 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4448 | { return !(__p1 == __p2); } |
| 4449 | |
| 4450 | private: |
| 4451 | // Hosts either log(mean) or the threshold of the simple method. |
| 4452 | void |
| 4453 | _M_initialize(); |
| 4454 | |
| 4455 | double _M_mean; |
| 4456 | |
| 4457 | double _M_lm_thr; |
| 4458 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 4459 | double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb; |
| 4460 | #endif |
| 4461 | }; |
| 4462 | |
| 4463 | // constructors and member functions |
| 4464 | |
| 4465 | poisson_distribution() : poisson_distribution(1.0) { } |
| 4466 | |
| 4467 | explicit |
| 4468 | poisson_distribution(double __mean) |
| 4469 | : _M_param(__mean), _M_nd() |
| 4470 | { } |
| 4471 | |
| 4472 | explicit |
| 4473 | poisson_distribution(const param_type& __p) |
| 4474 | : _M_param(__p), _M_nd() |
| 4475 | { } |
| 4476 | |
| 4477 | /** |
| 4478 | * @brief Resets the distribution state. |
| 4479 | */ |
| 4480 | void |
| 4481 | reset() |
| 4482 | { _M_nd.reset(); } |
| 4483 | |
| 4484 | /** |
| 4485 | * @brief Returns the distribution parameter @p mean. |
| 4486 | */ |
| 4487 | double |
| 4488 | mean() const |
| 4489 | { return _M_param.mean(); } |
| 4490 | |
| 4491 | /** |
| 4492 | * @brief Returns the parameter set of the distribution. |
| 4493 | */ |
| 4494 | param_type |
| 4495 | param() const |
| 4496 | { return _M_param; } |
| 4497 | |
| 4498 | /** |
| 4499 | * @brief Sets the parameter set of the distribution. |
| 4500 | * @param __param The new parameter set of the distribution. |
| 4501 | */ |
| 4502 | void |
| 4503 | param(const param_type& __param) |
| 4504 | { _M_param = __param; } |
| 4505 | |
| 4506 | /** |
| 4507 | * @brief Returns the greatest lower bound value of the distribution. |
| 4508 | */ |
| 4509 | result_type |
| 4510 | min() const |
| 4511 | { return 0; } |
| 4512 | |
| 4513 | /** |
| 4514 | * @brief Returns the least upper bound value of the distribution. |
| 4515 | */ |
| 4516 | result_type |
| 4517 | max() const |
| 4518 | { return std::numeric_limits<result_type>::max(); } |
| 4519 | |
| 4520 | /** |
| 4521 | * @brief Generating functions. |
| 4522 | */ |
| 4523 | template<typename _UniformRandomNumberGenerator> |
| 4524 | result_type |
| 4525 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4526 | { return this->operator()(__urng, _M_param); } |
| 4527 | |
| 4528 | template<typename _UniformRandomNumberGenerator> |
| 4529 | result_type |
| 4530 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4531 | const param_type& __p); |
| 4532 | |
| 4533 | template<typename _ForwardIterator, |
| 4534 | typename _UniformRandomNumberGenerator> |
| 4535 | void |
| 4536 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4537 | _UniformRandomNumberGenerator& __urng) |
| 4538 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4539 | |
| 4540 | template<typename _ForwardIterator, |
| 4541 | typename _UniformRandomNumberGenerator> |
| 4542 | void |
| 4543 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4544 | _UniformRandomNumberGenerator& __urng, |
| 4545 | const param_type& __p) |
| 4546 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4547 | |
| 4548 | template<typename _UniformRandomNumberGenerator> |
| 4549 | void |
| 4550 | __generate(result_type* __f, result_type* __t, |
| 4551 | _UniformRandomNumberGenerator& __urng, |
| 4552 | const param_type& __p) |
| 4553 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4554 | |
| 4555 | /** |
| 4556 | * @brief Return true if two Poisson distributions have the same |
| 4557 | * parameters and the sequences that would be generated |
| 4558 | * are equal. |
| 4559 | */ |
| 4560 | friend bool |
| 4561 | operator==(const poisson_distribution& __d1, |
| 4562 | const poisson_distribution& __d2) |
| 4563 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
| 4564 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
| 4565 | #else |
| 4566 | { return __d1._M_param == __d2._M_param; } |
| 4567 | #endif |
| 4568 | |
| 4569 | /** |
| 4570 | * @brief Inserts a %poisson_distribution random number distribution |
| 4571 | * @p __x into the output stream @p __os. |
| 4572 | * |
| 4573 | * @param __os An output stream. |
| 4574 | * @param __x A %poisson_distribution random number distribution. |
| 4575 | * |
| 4576 | * @returns The output stream with the state of @p __x inserted or in |
| 4577 | * an error state. |
| 4578 | */ |
| 4579 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4580 | friend std::basic_ostream<_CharT, _Traits>& |
| 4581 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4582 | const std::poisson_distribution<_IntType1>& __x); |
| 4583 | |
| 4584 | /** |
| 4585 | * @brief Extracts a %poisson_distribution random number distribution |
| 4586 | * @p __x from the input stream @p __is. |
| 4587 | * |
| 4588 | * @param __is An input stream. |
| 4589 | * @param __x A %poisson_distribution random number generator engine. |
| 4590 | * |
| 4591 | * @returns The input stream with @p __x extracted or in an error |
| 4592 | * state. |
| 4593 | */ |
| 4594 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4595 | friend std::basic_istream<_CharT, _Traits>& |
| 4596 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4597 | std::poisson_distribution<_IntType1>& __x); |
| 4598 | |
| 4599 | private: |
| 4600 | template<typename _ForwardIterator, |
| 4601 | typename _UniformRandomNumberGenerator> |
| 4602 | void |
| 4603 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4604 | _UniformRandomNumberGenerator& __urng, |
| 4605 | const param_type& __p); |
| 4606 | |
| 4607 | param_type _M_param; |
| 4608 | |
| 4609 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
| 4610 | std::normal_distribution<double> _M_nd; |
| 4611 | }; |
| 4612 | |
| 4613 | /** |
| 4614 | * @brief Return true if two Poisson distributions are different. |
| 4615 | */ |
| 4616 | template<typename _IntType> |
| 4617 | inline bool |
| 4618 | operator!=(const std::poisson_distribution<_IntType>& __d1, |
| 4619 | const std::poisson_distribution<_IntType>& __d2) |
| 4620 | { return !(__d1 == __d2); } |
| 4621 | |
| 4622 | |
| 4623 | /** |
| 4624 | * @brief An exponential continuous distribution for random numbers. |
| 4625 | * |
| 4626 | * The formula for the exponential probability density function is |
| 4627 | * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$. |
| 4628 | * |
| 4629 | * <table border=1 cellpadding=10 cellspacing=0> |
| 4630 | * <caption align=top>Distribution Statistics</caption> |
| 4631 | * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
| 4632 | * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr> |
| 4633 | * <tr><td>Mode</td><td>@f$zero@f$</td></tr> |
| 4634 | * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr> |
| 4635 | * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
| 4636 | * </table> |
| 4637 | */ |
| 4638 | template<typename _RealType = double> |
| 4639 | class exponential_distribution |
| 4640 | { |
| 4641 | static_assert(std::is_floating_point<_RealType>::value, |
| 4642 | "result_type must be a floating point type" ); |
| 4643 | |
| 4644 | public: |
| 4645 | /** The type of the range of the distribution. */ |
| 4646 | typedef _RealType result_type; |
| 4647 | |
| 4648 | /** Parameter type. */ |
| 4649 | struct param_type |
| 4650 | { |
| 4651 | typedef exponential_distribution<_RealType> distribution_type; |
| 4652 | |
| 4653 | param_type() : param_type(1.0) { } |
| 4654 | |
| 4655 | explicit |
| 4656 | param_type(_RealType __lambda) |
| 4657 | : _M_lambda(__lambda) |
| 4658 | { |
| 4659 | __glibcxx_assert(_M_lambda > _RealType(0)); |
| 4660 | } |
| 4661 | |
| 4662 | _RealType |
| 4663 | lambda() const |
| 4664 | { return _M_lambda; } |
| 4665 | |
| 4666 | friend bool |
| 4667 | operator==(const param_type& __p1, const param_type& __p2) |
| 4668 | { return __p1._M_lambda == __p2._M_lambda; } |
| 4669 | |
| 4670 | friend bool |
| 4671 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4672 | { return !(__p1 == __p2); } |
| 4673 | |
| 4674 | private: |
| 4675 | _RealType _M_lambda; |
| 4676 | }; |
| 4677 | |
| 4678 | public: |
| 4679 | /** |
| 4680 | * @brief Constructs an exponential distribution with inverse scale |
| 4681 | * parameter 1.0 |
| 4682 | */ |
| 4683 | exponential_distribution() : exponential_distribution(1.0) { } |
| 4684 | |
| 4685 | /** |
| 4686 | * @brief Constructs an exponential distribution with inverse scale |
| 4687 | * parameter @f$\lambda@f$. |
| 4688 | */ |
| 4689 | explicit |
| 4690 | exponential_distribution(_RealType __lambda) |
| 4691 | : _M_param(__lambda) |
| 4692 | { } |
| 4693 | |
| 4694 | explicit |
| 4695 | exponential_distribution(const param_type& __p) |
| 4696 | : _M_param(__p) |
| 4697 | { } |
| 4698 | |
| 4699 | /** |
| 4700 | * @brief Resets the distribution state. |
| 4701 | * |
| 4702 | * Has no effect on exponential distributions. |
| 4703 | */ |
| 4704 | void |
| 4705 | reset() { } |
| 4706 | |
| 4707 | /** |
| 4708 | * @brief Returns the inverse scale parameter of the distribution. |
| 4709 | */ |
| 4710 | _RealType |
| 4711 | lambda() const |
| 4712 | { return _M_param.lambda(); } |
| 4713 | |
| 4714 | /** |
| 4715 | * @brief Returns the parameter set of the distribution. |
| 4716 | */ |
| 4717 | param_type |
| 4718 | param() const |
| 4719 | { return _M_param; } |
| 4720 | |
| 4721 | /** |
| 4722 | * @brief Sets the parameter set of the distribution. |
| 4723 | * @param __param The new parameter set of the distribution. |
| 4724 | */ |
| 4725 | void |
| 4726 | param(const param_type& __param) |
| 4727 | { _M_param = __param; } |
| 4728 | |
| 4729 | /** |
| 4730 | * @brief Returns the greatest lower bound value of the distribution. |
| 4731 | */ |
| 4732 | result_type |
| 4733 | min() const |
| 4734 | { return result_type(0); } |
| 4735 | |
| 4736 | /** |
| 4737 | * @brief Returns the least upper bound value of the distribution. |
| 4738 | */ |
| 4739 | result_type |
| 4740 | max() const |
| 4741 | { return std::numeric_limits<result_type>::max(); } |
| 4742 | |
| 4743 | /** |
| 4744 | * @brief Generating functions. |
| 4745 | */ |
| 4746 | template<typename _UniformRandomNumberGenerator> |
| 4747 | result_type |
| 4748 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4749 | { return this->operator()(__urng, _M_param); } |
| 4750 | |
| 4751 | template<typename _UniformRandomNumberGenerator> |
| 4752 | result_type |
| 4753 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4754 | const param_type& __p) |
| 4755 | { |
| 4756 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 4757 | __aurng(__urng); |
| 4758 | return -std::log(result_type(1) - __aurng()) / __p.lambda(); |
| 4759 | } |
| 4760 | |
| 4761 | template<typename _ForwardIterator, |
| 4762 | typename _UniformRandomNumberGenerator> |
| 4763 | void |
| 4764 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4765 | _UniformRandomNumberGenerator& __urng) |
| 4766 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4767 | |
| 4768 | template<typename _ForwardIterator, |
| 4769 | typename _UniformRandomNumberGenerator> |
| 4770 | void |
| 4771 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4772 | _UniformRandomNumberGenerator& __urng, |
| 4773 | const param_type& __p) |
| 4774 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4775 | |
| 4776 | template<typename _UniformRandomNumberGenerator> |
| 4777 | void |
| 4778 | __generate(result_type* __f, result_type* __t, |
| 4779 | _UniformRandomNumberGenerator& __urng, |
| 4780 | const param_type& __p) |
| 4781 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4782 | |
| 4783 | /** |
| 4784 | * @brief Return true if two exponential distributions have the same |
| 4785 | * parameters. |
| 4786 | */ |
| 4787 | friend bool |
| 4788 | operator==(const exponential_distribution& __d1, |
| 4789 | const exponential_distribution& __d2) |
| 4790 | { return __d1._M_param == __d2._M_param; } |
| 4791 | |
| 4792 | private: |
| 4793 | template<typename _ForwardIterator, |
| 4794 | typename _UniformRandomNumberGenerator> |
| 4795 | void |
| 4796 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4797 | _UniformRandomNumberGenerator& __urng, |
| 4798 | const param_type& __p); |
| 4799 | |
| 4800 | param_type _M_param; |
| 4801 | }; |
| 4802 | |
| 4803 | /** |
| 4804 | * @brief Return true if two exponential distributions have different |
| 4805 | * parameters. |
| 4806 | */ |
| 4807 | template<typename _RealType> |
| 4808 | inline bool |
| 4809 | operator!=(const std::exponential_distribution<_RealType>& __d1, |
| 4810 | const std::exponential_distribution<_RealType>& __d2) |
| 4811 | { return !(__d1 == __d2); } |
| 4812 | |
| 4813 | /** |
| 4814 | * @brief Inserts a %exponential_distribution random number distribution |
| 4815 | * @p __x into the output stream @p __os. |
| 4816 | * |
| 4817 | * @param __os An output stream. |
| 4818 | * @param __x A %exponential_distribution random number distribution. |
| 4819 | * |
| 4820 | * @returns The output stream with the state of @p __x inserted or in |
| 4821 | * an error state. |
| 4822 | */ |
| 4823 | template<typename _RealType, typename _CharT, typename _Traits> |
| 4824 | std::basic_ostream<_CharT, _Traits>& |
| 4825 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4826 | const std::exponential_distribution<_RealType>& __x); |
| 4827 | |
| 4828 | /** |
| 4829 | * @brief Extracts a %exponential_distribution random number distribution |
| 4830 | * @p __x from the input stream @p __is. |
| 4831 | * |
| 4832 | * @param __is An input stream. |
| 4833 | * @param __x A %exponential_distribution random number |
| 4834 | * generator engine. |
| 4835 | * |
| 4836 | * @returns The input stream with @p __x extracted or in an error state. |
| 4837 | */ |
| 4838 | template<typename _RealType, typename _CharT, typename _Traits> |
| 4839 | std::basic_istream<_CharT, _Traits>& |
| 4840 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4841 | std::exponential_distribution<_RealType>& __x); |
| 4842 | |
| 4843 | |
| 4844 | /** |
| 4845 | * @brief A weibull_distribution random number distribution. |
| 4846 | * |
| 4847 | * The formula for the normal probability density function is: |
| 4848 | * @f[ |
| 4849 | * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1} |
| 4850 | * \exp{(-(\frac{x}{\beta})^\alpha)} |
| 4851 | * @f] |
| 4852 | */ |
| 4853 | template<typename _RealType = double> |
| 4854 | class weibull_distribution |
| 4855 | { |
| 4856 | static_assert(std::is_floating_point<_RealType>::value, |
| 4857 | "result_type must be a floating point type" ); |
| 4858 | |
| 4859 | public: |
| 4860 | /** The type of the range of the distribution. */ |
| 4861 | typedef _RealType result_type; |
| 4862 | |
| 4863 | /** Parameter type. */ |
| 4864 | struct param_type |
| 4865 | { |
| 4866 | typedef weibull_distribution<_RealType> distribution_type; |
| 4867 | |
| 4868 | param_type() : param_type(1.0) { } |
| 4869 | |
| 4870 | explicit |
| 4871 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
| 4872 | : _M_a(__a), _M_b(__b) |
| 4873 | { } |
| 4874 | |
| 4875 | _RealType |
| 4876 | a() const |
| 4877 | { return _M_a; } |
| 4878 | |
| 4879 | _RealType |
| 4880 | b() const |
| 4881 | { return _M_b; } |
| 4882 | |
| 4883 | friend bool |
| 4884 | operator==(const param_type& __p1, const param_type& __p2) |
| 4885 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 4886 | |
| 4887 | friend bool |
| 4888 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4889 | { return !(__p1 == __p2); } |
| 4890 | |
| 4891 | private: |
| 4892 | _RealType _M_a; |
| 4893 | _RealType _M_b; |
| 4894 | }; |
| 4895 | |
| 4896 | weibull_distribution() : weibull_distribution(1.0) { } |
| 4897 | |
| 4898 | explicit |
| 4899 | weibull_distribution(_RealType __a, _RealType __b = _RealType(1)) |
| 4900 | : _M_param(__a, __b) |
| 4901 | { } |
| 4902 | |
| 4903 | explicit |
| 4904 | weibull_distribution(const param_type& __p) |
| 4905 | : _M_param(__p) |
| 4906 | { } |
| 4907 | |
| 4908 | /** |
| 4909 | * @brief Resets the distribution state. |
| 4910 | */ |
| 4911 | void |
| 4912 | reset() |
| 4913 | { } |
| 4914 | |
| 4915 | /** |
| 4916 | * @brief Return the @f$a@f$ parameter of the distribution. |
| 4917 | */ |
| 4918 | _RealType |
| 4919 | a() const |
| 4920 | { return _M_param.a(); } |
| 4921 | |
| 4922 | /** |
| 4923 | * @brief Return the @f$b@f$ parameter of the distribution. |
| 4924 | */ |
| 4925 | _RealType |
| 4926 | b() const |
| 4927 | { return _M_param.b(); } |
| 4928 | |
| 4929 | /** |
| 4930 | * @brief Returns the parameter set of the distribution. |
| 4931 | */ |
| 4932 | param_type |
| 4933 | param() const |
| 4934 | { return _M_param; } |
| 4935 | |
| 4936 | /** |
| 4937 | * @brief Sets the parameter set of the distribution. |
| 4938 | * @param __param The new parameter set of the distribution. |
| 4939 | */ |
| 4940 | void |
| 4941 | param(const param_type& __param) |
| 4942 | { _M_param = __param; } |
| 4943 | |
| 4944 | /** |
| 4945 | * @brief Returns the greatest lower bound value of the distribution. |
| 4946 | */ |
| 4947 | result_type |
| 4948 | min() const |
| 4949 | { return result_type(0); } |
| 4950 | |
| 4951 | /** |
| 4952 | * @brief Returns the least upper bound value of the distribution. |
| 4953 | */ |
| 4954 | result_type |
| 4955 | max() const |
| 4956 | { return std::numeric_limits<result_type>::max(); } |
| 4957 | |
| 4958 | /** |
| 4959 | * @brief Generating functions. |
| 4960 | */ |
| 4961 | template<typename _UniformRandomNumberGenerator> |
| 4962 | result_type |
| 4963 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4964 | { return this->operator()(__urng, _M_param); } |
| 4965 | |
| 4966 | template<typename _UniformRandomNumberGenerator> |
| 4967 | result_type |
| 4968 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4969 | const param_type& __p); |
| 4970 | |
| 4971 | template<typename _ForwardIterator, |
| 4972 | typename _UniformRandomNumberGenerator> |
| 4973 | void |
| 4974 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4975 | _UniformRandomNumberGenerator& __urng) |
| 4976 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4977 | |
| 4978 | template<typename _ForwardIterator, |
| 4979 | typename _UniformRandomNumberGenerator> |
| 4980 | void |
| 4981 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4982 | _UniformRandomNumberGenerator& __urng, |
| 4983 | const param_type& __p) |
| 4984 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4985 | |
| 4986 | template<typename _UniformRandomNumberGenerator> |
| 4987 | void |
| 4988 | __generate(result_type* __f, result_type* __t, |
| 4989 | _UniformRandomNumberGenerator& __urng, |
| 4990 | const param_type& __p) |
| 4991 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4992 | |
| 4993 | /** |
| 4994 | * @brief Return true if two Weibull distributions have the same |
| 4995 | * parameters. |
| 4996 | */ |
| 4997 | friend bool |
| 4998 | operator==(const weibull_distribution& __d1, |
| 4999 | const weibull_distribution& __d2) |
| 5000 | { return __d1._M_param == __d2._M_param; } |
| 5001 | |
| 5002 | private: |
| 5003 | template<typename _ForwardIterator, |
| 5004 | typename _UniformRandomNumberGenerator> |
| 5005 | void |
| 5006 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5007 | _UniformRandomNumberGenerator& __urng, |
| 5008 | const param_type& __p); |
| 5009 | |
| 5010 | param_type _M_param; |
| 5011 | }; |
| 5012 | |
| 5013 | /** |
| 5014 | * @brief Return true if two Weibull distributions have different |
| 5015 | * parameters. |
| 5016 | */ |
| 5017 | template<typename _RealType> |
| 5018 | inline bool |
| 5019 | operator!=(const std::weibull_distribution<_RealType>& __d1, |
| 5020 | const std::weibull_distribution<_RealType>& __d2) |
| 5021 | { return !(__d1 == __d2); } |
| 5022 | |
| 5023 | /** |
| 5024 | * @brief Inserts a %weibull_distribution random number distribution |
| 5025 | * @p __x into the output stream @p __os. |
| 5026 | * |
| 5027 | * @param __os An output stream. |
| 5028 | * @param __x A %weibull_distribution random number distribution. |
| 5029 | * |
| 5030 | * @returns The output stream with the state of @p __x inserted or in |
| 5031 | * an error state. |
| 5032 | */ |
| 5033 | template<typename _RealType, typename _CharT, typename _Traits> |
| 5034 | std::basic_ostream<_CharT, _Traits>& |
| 5035 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5036 | const std::weibull_distribution<_RealType>& __x); |
| 5037 | |
| 5038 | /** |
| 5039 | * @brief Extracts a %weibull_distribution random number distribution |
| 5040 | * @p __x from the input stream @p __is. |
| 5041 | * |
| 5042 | * @param __is An input stream. |
| 5043 | * @param __x A %weibull_distribution random number |
| 5044 | * generator engine. |
| 5045 | * |
| 5046 | * @returns The input stream with @p __x extracted or in an error state. |
| 5047 | */ |
| 5048 | template<typename _RealType, typename _CharT, typename _Traits> |
| 5049 | std::basic_istream<_CharT, _Traits>& |
| 5050 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5051 | std::weibull_distribution<_RealType>& __x); |
| 5052 | |
| 5053 | |
| 5054 | /** |
| 5055 | * @brief A extreme_value_distribution random number distribution. |
| 5056 | * |
| 5057 | * The formula for the normal probability mass function is |
| 5058 | * @f[ |
| 5059 | * p(x|a,b) = \frac{1}{b} |
| 5060 | * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b})) |
| 5061 | * @f] |
| 5062 | */ |
| 5063 | template<typename _RealType = double> |
| 5064 | class extreme_value_distribution |
| 5065 | { |
| 5066 | static_assert(std::is_floating_point<_RealType>::value, |
| 5067 | "result_type must be a floating point type" ); |
| 5068 | |
| 5069 | public: |
| 5070 | /** The type of the range of the distribution. */ |
| 5071 | typedef _RealType result_type; |
| 5072 | |
| 5073 | /** Parameter type. */ |
| 5074 | struct param_type |
| 5075 | { |
| 5076 | typedef extreme_value_distribution<_RealType> distribution_type; |
| 5077 | |
| 5078 | param_type() : param_type(0.0) { } |
| 5079 | |
| 5080 | explicit |
| 5081 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
| 5082 | : _M_a(__a), _M_b(__b) |
| 5083 | { } |
| 5084 | |
| 5085 | _RealType |
| 5086 | a() const |
| 5087 | { return _M_a; } |
| 5088 | |
| 5089 | _RealType |
| 5090 | b() const |
| 5091 | { return _M_b; } |
| 5092 | |
| 5093 | friend bool |
| 5094 | operator==(const param_type& __p1, const param_type& __p2) |
| 5095 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 5096 | |
| 5097 | friend bool |
| 5098 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5099 | { return !(__p1 == __p2); } |
| 5100 | |
| 5101 | private: |
| 5102 | _RealType _M_a; |
| 5103 | _RealType _M_b; |
| 5104 | }; |
| 5105 | |
| 5106 | extreme_value_distribution() : extreme_value_distribution(0.0) { } |
| 5107 | |
| 5108 | explicit |
| 5109 | extreme_value_distribution(_RealType __a, _RealType __b = _RealType(1)) |
| 5110 | : _M_param(__a, __b) |
| 5111 | { } |
| 5112 | |
| 5113 | explicit |
| 5114 | extreme_value_distribution(const param_type& __p) |
| 5115 | : _M_param(__p) |
| 5116 | { } |
| 5117 | |
| 5118 | /** |
| 5119 | * @brief Resets the distribution state. |
| 5120 | */ |
| 5121 | void |
| 5122 | reset() |
| 5123 | { } |
| 5124 | |
| 5125 | /** |
| 5126 | * @brief Return the @f$a@f$ parameter of the distribution. |
| 5127 | */ |
| 5128 | _RealType |
| 5129 | a() const |
| 5130 | { return _M_param.a(); } |
| 5131 | |
| 5132 | /** |
| 5133 | * @brief Return the @f$b@f$ parameter of the distribution. |
| 5134 | */ |
| 5135 | _RealType |
| 5136 | b() const |
| 5137 | { return _M_param.b(); } |
| 5138 | |
| 5139 | /** |
| 5140 | * @brief Returns the parameter set of the distribution. |
| 5141 | */ |
| 5142 | param_type |
| 5143 | param() const |
| 5144 | { return _M_param; } |
| 5145 | |
| 5146 | /** |
| 5147 | * @brief Sets the parameter set of the distribution. |
| 5148 | * @param __param The new parameter set of the distribution. |
| 5149 | */ |
| 5150 | void |
| 5151 | param(const param_type& __param) |
| 5152 | { _M_param = __param; } |
| 5153 | |
| 5154 | /** |
| 5155 | * @brief Returns the greatest lower bound value of the distribution. |
| 5156 | */ |
| 5157 | result_type |
| 5158 | min() const |
| 5159 | { return std::numeric_limits<result_type>::lowest(); } |
| 5160 | |
| 5161 | /** |
| 5162 | * @brief Returns the least upper bound value of the distribution. |
| 5163 | */ |
| 5164 | result_type |
| 5165 | max() const |
| 5166 | { return std::numeric_limits<result_type>::max(); } |
| 5167 | |
| 5168 | /** |
| 5169 | * @brief Generating functions. |
| 5170 | */ |
| 5171 | template<typename _UniformRandomNumberGenerator> |
| 5172 | result_type |
| 5173 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5174 | { return this->operator()(__urng, _M_param); } |
| 5175 | |
| 5176 | template<typename _UniformRandomNumberGenerator> |
| 5177 | result_type |
| 5178 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5179 | const param_type& __p); |
| 5180 | |
| 5181 | template<typename _ForwardIterator, |
| 5182 | typename _UniformRandomNumberGenerator> |
| 5183 | void |
| 5184 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5185 | _UniformRandomNumberGenerator& __urng) |
| 5186 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5187 | |
| 5188 | template<typename _ForwardIterator, |
| 5189 | typename _UniformRandomNumberGenerator> |
| 5190 | void |
| 5191 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5192 | _UniformRandomNumberGenerator& __urng, |
| 5193 | const param_type& __p) |
| 5194 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5195 | |
| 5196 | template<typename _UniformRandomNumberGenerator> |
| 5197 | void |
| 5198 | __generate(result_type* __f, result_type* __t, |
| 5199 | _UniformRandomNumberGenerator& __urng, |
| 5200 | const param_type& __p) |
| 5201 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5202 | |
| 5203 | /** |
| 5204 | * @brief Return true if two extreme value distributions have the same |
| 5205 | * parameters. |
| 5206 | */ |
| 5207 | friend bool |
| 5208 | operator==(const extreme_value_distribution& __d1, |
| 5209 | const extreme_value_distribution& __d2) |
| 5210 | { return __d1._M_param == __d2._M_param; } |
| 5211 | |
| 5212 | private: |
| 5213 | template<typename _ForwardIterator, |
| 5214 | typename _UniformRandomNumberGenerator> |
| 5215 | void |
| 5216 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5217 | _UniformRandomNumberGenerator& __urng, |
| 5218 | const param_type& __p); |
| 5219 | |
| 5220 | param_type _M_param; |
| 5221 | }; |
| 5222 | |
| 5223 | /** |
| 5224 | * @brief Return true if two extreme value distributions have different |
| 5225 | * parameters. |
| 5226 | */ |
| 5227 | template<typename _RealType> |
| 5228 | inline bool |
| 5229 | operator!=(const std::extreme_value_distribution<_RealType>& __d1, |
| 5230 | const std::extreme_value_distribution<_RealType>& __d2) |
| 5231 | { return !(__d1 == __d2); } |
| 5232 | |
| 5233 | /** |
| 5234 | * @brief Inserts a %extreme_value_distribution random number distribution |
| 5235 | * @p __x into the output stream @p __os. |
| 5236 | * |
| 5237 | * @param __os An output stream. |
| 5238 | * @param __x A %extreme_value_distribution random number distribution. |
| 5239 | * |
| 5240 | * @returns The output stream with the state of @p __x inserted or in |
| 5241 | * an error state. |
| 5242 | */ |
| 5243 | template<typename _RealType, typename _CharT, typename _Traits> |
| 5244 | std::basic_ostream<_CharT, _Traits>& |
| 5245 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5246 | const std::extreme_value_distribution<_RealType>& __x); |
| 5247 | |
| 5248 | /** |
| 5249 | * @brief Extracts a %extreme_value_distribution random number |
| 5250 | * distribution @p __x from the input stream @p __is. |
| 5251 | * |
| 5252 | * @param __is An input stream. |
| 5253 | * @param __x A %extreme_value_distribution random number |
| 5254 | * generator engine. |
| 5255 | * |
| 5256 | * @returns The input stream with @p __x extracted or in an error state. |
| 5257 | */ |
| 5258 | template<typename _RealType, typename _CharT, typename _Traits> |
| 5259 | std::basic_istream<_CharT, _Traits>& |
| 5260 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5261 | std::extreme_value_distribution<_RealType>& __x); |
| 5262 | |
| 5263 | |
| 5264 | /** |
| 5265 | * @brief A discrete_distribution random number distribution. |
| 5266 | * |
| 5267 | * The formula for the discrete probability mass function is |
| 5268 | * |
| 5269 | */ |
| 5270 | template<typename _IntType = int> |
| 5271 | class discrete_distribution |
| 5272 | { |
| 5273 | static_assert(std::is_integral<_IntType>::value, |
| 5274 | "result_type must be an integral type" ); |
| 5275 | |
| 5276 | public: |
| 5277 | /** The type of the range of the distribution. */ |
| 5278 | typedef _IntType result_type; |
| 5279 | |
| 5280 | /** Parameter type. */ |
| 5281 | struct param_type |
| 5282 | { |
| 5283 | typedef discrete_distribution<_IntType> distribution_type; |
| 5284 | friend class discrete_distribution<_IntType>; |
| 5285 | |
| 5286 | param_type() |
| 5287 | : _M_prob(), _M_cp() |
| 5288 | { } |
| 5289 | |
| 5290 | template<typename _InputIterator> |
| 5291 | param_type(_InputIterator __wbegin, |
| 5292 | _InputIterator __wend) |
| 5293 | : _M_prob(__wbegin, __wend), _M_cp() |
| 5294 | { _M_initialize(); } |
| 5295 | |
| 5296 | param_type(initializer_list<double> __wil) |
| 5297 | : _M_prob(__wil.begin(), __wil.end()), _M_cp() |
| 5298 | { _M_initialize(); } |
| 5299 | |
| 5300 | template<typename _Func> |
| 5301 | param_type(size_t __nw, double __xmin, double __xmax, |
| 5302 | _Func __fw); |
| 5303 | |
| 5304 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
| 5305 | param_type(const param_type&) = default; |
| 5306 | param_type& operator=(const param_type&) = default; |
| 5307 | |
| 5308 | std::vector<double> |
| 5309 | probabilities() const |
| 5310 | { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; } |
| 5311 | |
| 5312 | friend bool |
| 5313 | operator==(const param_type& __p1, const param_type& __p2) |
| 5314 | { return __p1._M_prob == __p2._M_prob; } |
| 5315 | |
| 5316 | friend bool |
| 5317 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5318 | { return !(__p1 == __p2); } |
| 5319 | |
| 5320 | private: |
| 5321 | void |
| 5322 | _M_initialize(); |
| 5323 | |
| 5324 | std::vector<double> _M_prob; |
| 5325 | std::vector<double> _M_cp; |
| 5326 | }; |
| 5327 | |
| 5328 | discrete_distribution() |
| 5329 | : _M_param() |
| 5330 | { } |
| 5331 | |
| 5332 | template<typename _InputIterator> |
| 5333 | discrete_distribution(_InputIterator __wbegin, |
| 5334 | _InputIterator __wend) |
| 5335 | : _M_param(__wbegin, __wend) |
| 5336 | { } |
| 5337 | |
| 5338 | discrete_distribution(initializer_list<double> __wl) |
| 5339 | : _M_param(__wl) |
| 5340 | { } |
| 5341 | |
| 5342 | template<typename _Func> |
| 5343 | discrete_distribution(size_t __nw, double __xmin, double __xmax, |
| 5344 | _Func __fw) |
| 5345 | : _M_param(__nw, __xmin, __xmax, __fw) |
| 5346 | { } |
| 5347 | |
| 5348 | explicit |
| 5349 | discrete_distribution(const param_type& __p) |
| 5350 | : _M_param(__p) |
| 5351 | { } |
| 5352 | |
| 5353 | /** |
| 5354 | * @brief Resets the distribution state. |
| 5355 | */ |
| 5356 | void |
| 5357 | reset() |
| 5358 | { } |
| 5359 | |
| 5360 | /** |
| 5361 | * @brief Returns the probabilities of the distribution. |
| 5362 | */ |
| 5363 | std::vector<double> |
| 5364 | probabilities() const |
| 5365 | { |
| 5366 | return _M_param._M_prob.empty() |
| 5367 | ? std::vector<double>(1, 1.0) : _M_param._M_prob; |
| 5368 | } |
| 5369 | |
| 5370 | /** |
| 5371 | * @brief Returns the parameter set of the distribution. |
| 5372 | */ |
| 5373 | param_type |
| 5374 | param() const |
| 5375 | { return _M_param; } |
| 5376 | |
| 5377 | /** |
| 5378 | * @brief Sets the parameter set of the distribution. |
| 5379 | * @param __param The new parameter set of the distribution. |
| 5380 | */ |
| 5381 | void |
| 5382 | param(const param_type& __param) |
| 5383 | { _M_param = __param; } |
| 5384 | |
| 5385 | /** |
| 5386 | * @brief Returns the greatest lower bound value of the distribution. |
| 5387 | */ |
| 5388 | result_type |
| 5389 | min() const |
| 5390 | { return result_type(0); } |
| 5391 | |
| 5392 | /** |
| 5393 | * @brief Returns the least upper bound value of the distribution. |
| 5394 | */ |
| 5395 | result_type |
| 5396 | max() const |
| 5397 | { |
| 5398 | return _M_param._M_prob.empty() |
| 5399 | ? result_type(0) : result_type(_M_param._M_prob.size() - 1); |
| 5400 | } |
| 5401 | |
| 5402 | /** |
| 5403 | * @brief Generating functions. |
| 5404 | */ |
| 5405 | template<typename _UniformRandomNumberGenerator> |
| 5406 | result_type |
| 5407 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5408 | { return this->operator()(__urng, _M_param); } |
| 5409 | |
| 5410 | template<typename _UniformRandomNumberGenerator> |
| 5411 | result_type |
| 5412 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5413 | const param_type& __p); |
| 5414 | |
| 5415 | template<typename _ForwardIterator, |
| 5416 | typename _UniformRandomNumberGenerator> |
| 5417 | void |
| 5418 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5419 | _UniformRandomNumberGenerator& __urng) |
| 5420 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5421 | |
| 5422 | template<typename _ForwardIterator, |
| 5423 | typename _UniformRandomNumberGenerator> |
| 5424 | void |
| 5425 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5426 | _UniformRandomNumberGenerator& __urng, |
| 5427 | const param_type& __p) |
| 5428 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5429 | |
| 5430 | template<typename _UniformRandomNumberGenerator> |
| 5431 | void |
| 5432 | __generate(result_type* __f, result_type* __t, |
| 5433 | _UniformRandomNumberGenerator& __urng, |
| 5434 | const param_type& __p) |
| 5435 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5436 | |
| 5437 | /** |
| 5438 | * @brief Return true if two discrete distributions have the same |
| 5439 | * parameters. |
| 5440 | */ |
| 5441 | friend bool |
| 5442 | operator==(const discrete_distribution& __d1, |
| 5443 | const discrete_distribution& __d2) |
| 5444 | { return __d1._M_param == __d2._M_param; } |
| 5445 | |
| 5446 | /** |
| 5447 | * @brief Inserts a %discrete_distribution random number distribution |
| 5448 | * @p __x into the output stream @p __os. |
| 5449 | * |
| 5450 | * @param __os An output stream. |
| 5451 | * @param __x A %discrete_distribution random number distribution. |
| 5452 | * |
| 5453 | * @returns The output stream with the state of @p __x inserted or in |
| 5454 | * an error state. |
| 5455 | */ |
| 5456 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 5457 | friend std::basic_ostream<_CharT, _Traits>& |
| 5458 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5459 | const std::discrete_distribution<_IntType1>& __x); |
| 5460 | |
| 5461 | /** |
| 5462 | * @brief Extracts a %discrete_distribution random number distribution |
| 5463 | * @p __x from the input stream @p __is. |
| 5464 | * |
| 5465 | * @param __is An input stream. |
| 5466 | * @param __x A %discrete_distribution random number |
| 5467 | * generator engine. |
| 5468 | * |
| 5469 | * @returns The input stream with @p __x extracted or in an error |
| 5470 | * state. |
| 5471 | */ |
| 5472 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 5473 | friend std::basic_istream<_CharT, _Traits>& |
| 5474 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5475 | std::discrete_distribution<_IntType1>& __x); |
| 5476 | |
| 5477 | private: |
| 5478 | template<typename _ForwardIterator, |
| 5479 | typename _UniformRandomNumberGenerator> |
| 5480 | void |
| 5481 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5482 | _UniformRandomNumberGenerator& __urng, |
| 5483 | const param_type& __p); |
| 5484 | |
| 5485 | param_type _M_param; |
| 5486 | }; |
| 5487 | |
| 5488 | /** |
| 5489 | * @brief Return true if two discrete distributions have different |
| 5490 | * parameters. |
| 5491 | */ |
| 5492 | template<typename _IntType> |
| 5493 | inline bool |
| 5494 | operator!=(const std::discrete_distribution<_IntType>& __d1, |
| 5495 | const std::discrete_distribution<_IntType>& __d2) |
| 5496 | { return !(__d1 == __d2); } |
| 5497 | |
| 5498 | |
| 5499 | /** |
| 5500 | * @brief A piecewise_constant_distribution random number distribution. |
| 5501 | * |
| 5502 | * The formula for the piecewise constant probability mass function is |
| 5503 | * |
| 5504 | */ |
| 5505 | template<typename _RealType = double> |
| 5506 | class piecewise_constant_distribution |
| 5507 | { |
| 5508 | static_assert(std::is_floating_point<_RealType>::value, |
| 5509 | "result_type must be a floating point type" ); |
| 5510 | |
| 5511 | public: |
| 5512 | /** The type of the range of the distribution. */ |
| 5513 | typedef _RealType result_type; |
| 5514 | |
| 5515 | /** Parameter type. */ |
| 5516 | struct param_type |
| 5517 | { |
| 5518 | typedef piecewise_constant_distribution<_RealType> distribution_type; |
| 5519 | friend class piecewise_constant_distribution<_RealType>; |
| 5520 | |
| 5521 | param_type() |
| 5522 | : _M_int(), _M_den(), _M_cp() |
| 5523 | { } |
| 5524 | |
| 5525 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5526 | param_type(_InputIteratorB __bfirst, |
| 5527 | _InputIteratorB __bend, |
| 5528 | _InputIteratorW __wbegin); |
| 5529 | |
| 5530 | template<typename _Func> |
| 5531 | param_type(initializer_list<_RealType> __bi, _Func __fw); |
| 5532 | |
| 5533 | template<typename _Func> |
| 5534 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
| 5535 | _Func __fw); |
| 5536 | |
| 5537 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
| 5538 | param_type(const param_type&) = default; |
| 5539 | param_type& operator=(const param_type&) = default; |
| 5540 | |
| 5541 | std::vector<_RealType> |
| 5542 | intervals() const |
| 5543 | { |
| 5544 | if (_M_int.empty()) |
| 5545 | { |
| 5546 | std::vector<_RealType> __tmp(2); |
| 5547 | __tmp[1] = _RealType(1); |
| 5548 | return __tmp; |
| 5549 | } |
| 5550 | else |
| 5551 | return _M_int; |
| 5552 | } |
| 5553 | |
| 5554 | std::vector<double> |
| 5555 | densities() const |
| 5556 | { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; } |
| 5557 | |
| 5558 | friend bool |
| 5559 | operator==(const param_type& __p1, const param_type& __p2) |
| 5560 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
| 5561 | |
| 5562 | friend bool |
| 5563 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5564 | { return !(__p1 == __p2); } |
| 5565 | |
| 5566 | private: |
| 5567 | void |
| 5568 | _M_initialize(); |
| 5569 | |
| 5570 | std::vector<_RealType> _M_int; |
| 5571 | std::vector<double> _M_den; |
| 5572 | std::vector<double> _M_cp; |
| 5573 | }; |
| 5574 | |
| 5575 | piecewise_constant_distribution() |
| 5576 | : _M_param() |
| 5577 | { } |
| 5578 | |
| 5579 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5580 | piecewise_constant_distribution(_InputIteratorB __bfirst, |
| 5581 | _InputIteratorB __bend, |
| 5582 | _InputIteratorW __wbegin) |
| 5583 | : _M_param(__bfirst, __bend, __wbegin) |
| 5584 | { } |
| 5585 | |
| 5586 | template<typename _Func> |
| 5587 | piecewise_constant_distribution(initializer_list<_RealType> __bl, |
| 5588 | _Func __fw) |
| 5589 | : _M_param(__bl, __fw) |
| 5590 | { } |
| 5591 | |
| 5592 | template<typename _Func> |
| 5593 | piecewise_constant_distribution(size_t __nw, |
| 5594 | _RealType __xmin, _RealType __xmax, |
| 5595 | _Func __fw) |
| 5596 | : _M_param(__nw, __xmin, __xmax, __fw) |
| 5597 | { } |
| 5598 | |
| 5599 | explicit |
| 5600 | piecewise_constant_distribution(const param_type& __p) |
| 5601 | : _M_param(__p) |
| 5602 | { } |
| 5603 | |
| 5604 | /** |
| 5605 | * @brief Resets the distribution state. |
| 5606 | */ |
| 5607 | void |
| 5608 | reset() |
| 5609 | { } |
| 5610 | |
| 5611 | /** |
| 5612 | * @brief Returns a vector of the intervals. |
| 5613 | */ |
| 5614 | std::vector<_RealType> |
| 5615 | intervals() const |
| 5616 | { |
| 5617 | if (_M_param._M_int.empty()) |
| 5618 | { |
| 5619 | std::vector<_RealType> __tmp(2); |
| 5620 | __tmp[1] = _RealType(1); |
| 5621 | return __tmp; |
| 5622 | } |
| 5623 | else |
| 5624 | return _M_param._M_int; |
| 5625 | } |
| 5626 | |
| 5627 | /** |
| 5628 | * @brief Returns a vector of the probability densities. |
| 5629 | */ |
| 5630 | std::vector<double> |
| 5631 | densities() const |
| 5632 | { |
| 5633 | return _M_param._M_den.empty() |
| 5634 | ? std::vector<double>(1, 1.0) : _M_param._M_den; |
| 5635 | } |
| 5636 | |
| 5637 | /** |
| 5638 | * @brief Returns the parameter set of the distribution. |
| 5639 | */ |
| 5640 | param_type |
| 5641 | param() const |
| 5642 | { return _M_param; } |
| 5643 | |
| 5644 | /** |
| 5645 | * @brief Sets the parameter set of the distribution. |
| 5646 | * @param __param The new parameter set of the distribution. |
| 5647 | */ |
| 5648 | void |
| 5649 | param(const param_type& __param) |
| 5650 | { _M_param = __param; } |
| 5651 | |
| 5652 | /** |
| 5653 | * @brief Returns the greatest lower bound value of the distribution. |
| 5654 | */ |
| 5655 | result_type |
| 5656 | min() const |
| 5657 | { |
| 5658 | return _M_param._M_int.empty() |
| 5659 | ? result_type(0) : _M_param._M_int.front(); |
| 5660 | } |
| 5661 | |
| 5662 | /** |
| 5663 | * @brief Returns the least upper bound value of the distribution. |
| 5664 | */ |
| 5665 | result_type |
| 5666 | max() const |
| 5667 | { |
| 5668 | return _M_param._M_int.empty() |
| 5669 | ? result_type(1) : _M_param._M_int.back(); |
| 5670 | } |
| 5671 | |
| 5672 | /** |
| 5673 | * @brief Generating functions. |
| 5674 | */ |
| 5675 | template<typename _UniformRandomNumberGenerator> |
| 5676 | result_type |
| 5677 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5678 | { return this->operator()(__urng, _M_param); } |
| 5679 | |
| 5680 | template<typename _UniformRandomNumberGenerator> |
| 5681 | result_type |
| 5682 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5683 | const param_type& __p); |
| 5684 | |
| 5685 | template<typename _ForwardIterator, |
| 5686 | typename _UniformRandomNumberGenerator> |
| 5687 | void |
| 5688 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5689 | _UniformRandomNumberGenerator& __urng) |
| 5690 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5691 | |
| 5692 | template<typename _ForwardIterator, |
| 5693 | typename _UniformRandomNumberGenerator> |
| 5694 | void |
| 5695 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5696 | _UniformRandomNumberGenerator& __urng, |
| 5697 | const param_type& __p) |
| 5698 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5699 | |
| 5700 | template<typename _UniformRandomNumberGenerator> |
| 5701 | void |
| 5702 | __generate(result_type* __f, result_type* __t, |
| 5703 | _UniformRandomNumberGenerator& __urng, |
| 5704 | const param_type& __p) |
| 5705 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5706 | |
| 5707 | /** |
| 5708 | * @brief Return true if two piecewise constant distributions have the |
| 5709 | * same parameters. |
| 5710 | */ |
| 5711 | friend bool |
| 5712 | operator==(const piecewise_constant_distribution& __d1, |
| 5713 | const piecewise_constant_distribution& __d2) |
| 5714 | { return __d1._M_param == __d2._M_param; } |
| 5715 | |
| 5716 | /** |
| 5717 | * @brief Inserts a %piecewise_constant_distribution random |
| 5718 | * number distribution @p __x into the output stream @p __os. |
| 5719 | * |
| 5720 | * @param __os An output stream. |
| 5721 | * @param __x A %piecewise_constant_distribution random number |
| 5722 | * distribution. |
| 5723 | * |
| 5724 | * @returns The output stream with the state of @p __x inserted or in |
| 5725 | * an error state. |
| 5726 | */ |
| 5727 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 5728 | friend std::basic_ostream<_CharT, _Traits>& |
| 5729 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5730 | const std::piecewise_constant_distribution<_RealType1>& __x); |
| 5731 | |
| 5732 | /** |
| 5733 | * @brief Extracts a %piecewise_constant_distribution random |
| 5734 | * number distribution @p __x from the input stream @p __is. |
| 5735 | * |
| 5736 | * @param __is An input stream. |
| 5737 | * @param __x A %piecewise_constant_distribution random number |
| 5738 | * generator engine. |
| 5739 | * |
| 5740 | * @returns The input stream with @p __x extracted or in an error |
| 5741 | * state. |
| 5742 | */ |
| 5743 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 5744 | friend std::basic_istream<_CharT, _Traits>& |
| 5745 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5746 | std::piecewise_constant_distribution<_RealType1>& __x); |
| 5747 | |
| 5748 | private: |
| 5749 | template<typename _ForwardIterator, |
| 5750 | typename _UniformRandomNumberGenerator> |
| 5751 | void |
| 5752 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5753 | _UniformRandomNumberGenerator& __urng, |
| 5754 | const param_type& __p); |
| 5755 | |
| 5756 | param_type _M_param; |
| 5757 | }; |
| 5758 | |
| 5759 | /** |
| 5760 | * @brief Return true if two piecewise constant distributions have |
| 5761 | * different parameters. |
| 5762 | */ |
| 5763 | template<typename _RealType> |
| 5764 | inline bool |
| 5765 | operator!=(const std::piecewise_constant_distribution<_RealType>& __d1, |
| 5766 | const std::piecewise_constant_distribution<_RealType>& __d2) |
| 5767 | { return !(__d1 == __d2); } |
| 5768 | |
| 5769 | |
| 5770 | /** |
| 5771 | * @brief A piecewise_linear_distribution random number distribution. |
| 5772 | * |
| 5773 | * The formula for the piecewise linear probability mass function is |
| 5774 | * |
| 5775 | */ |
| 5776 | template<typename _RealType = double> |
| 5777 | class piecewise_linear_distribution |
| 5778 | { |
| 5779 | static_assert(std::is_floating_point<_RealType>::value, |
| 5780 | "result_type must be a floating point type" ); |
| 5781 | |
| 5782 | public: |
| 5783 | /** The type of the range of the distribution. */ |
| 5784 | typedef _RealType result_type; |
| 5785 | |
| 5786 | /** Parameter type. */ |
| 5787 | struct param_type |
| 5788 | { |
| 5789 | typedef piecewise_linear_distribution<_RealType> distribution_type; |
| 5790 | friend class piecewise_linear_distribution<_RealType>; |
| 5791 | |
| 5792 | param_type() |
| 5793 | : _M_int(), _M_den(), _M_cp(), _M_m() |
| 5794 | { } |
| 5795 | |
| 5796 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5797 | param_type(_InputIteratorB __bfirst, |
| 5798 | _InputIteratorB __bend, |
| 5799 | _InputIteratorW __wbegin); |
| 5800 | |
| 5801 | template<typename _Func> |
| 5802 | param_type(initializer_list<_RealType> __bl, _Func __fw); |
| 5803 | |
| 5804 | template<typename _Func> |
| 5805 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
| 5806 | _Func __fw); |
| 5807 | |
| 5808 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
| 5809 | param_type(const param_type&) = default; |
| 5810 | param_type& operator=(const param_type&) = default; |
| 5811 | |
| 5812 | std::vector<_RealType> |
| 5813 | intervals() const |
| 5814 | { |
| 5815 | if (_M_int.empty()) |
| 5816 | { |
| 5817 | std::vector<_RealType> __tmp(2); |
| 5818 | __tmp[1] = _RealType(1); |
| 5819 | return __tmp; |
| 5820 | } |
| 5821 | else |
| 5822 | return _M_int; |
| 5823 | } |
| 5824 | |
| 5825 | std::vector<double> |
| 5826 | densities() const |
| 5827 | { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; } |
| 5828 | |
| 5829 | friend bool |
| 5830 | operator==(const param_type& __p1, const param_type& __p2) |
| 5831 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
| 5832 | |
| 5833 | friend bool |
| 5834 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5835 | { return !(__p1 == __p2); } |
| 5836 | |
| 5837 | private: |
| 5838 | void |
| 5839 | _M_initialize(); |
| 5840 | |
| 5841 | std::vector<_RealType> _M_int; |
| 5842 | std::vector<double> _M_den; |
| 5843 | std::vector<double> _M_cp; |
| 5844 | std::vector<double> _M_m; |
| 5845 | }; |
| 5846 | |
| 5847 | piecewise_linear_distribution() |
| 5848 | : _M_param() |
| 5849 | { } |
| 5850 | |
| 5851 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5852 | piecewise_linear_distribution(_InputIteratorB __bfirst, |
| 5853 | _InputIteratorB __bend, |
| 5854 | _InputIteratorW __wbegin) |
| 5855 | : _M_param(__bfirst, __bend, __wbegin) |
| 5856 | { } |
| 5857 | |
| 5858 | template<typename _Func> |
| 5859 | piecewise_linear_distribution(initializer_list<_RealType> __bl, |
| 5860 | _Func __fw) |
| 5861 | : _M_param(__bl, __fw) |
| 5862 | { } |
| 5863 | |
| 5864 | template<typename _Func> |
| 5865 | piecewise_linear_distribution(size_t __nw, |
| 5866 | _RealType __xmin, _RealType __xmax, |
| 5867 | _Func __fw) |
| 5868 | : _M_param(__nw, __xmin, __xmax, __fw) |
| 5869 | { } |
| 5870 | |
| 5871 | explicit |
| 5872 | piecewise_linear_distribution(const param_type& __p) |
| 5873 | : _M_param(__p) |
| 5874 | { } |
| 5875 | |
| 5876 | /** |
| 5877 | * Resets the distribution state. |
| 5878 | */ |
| 5879 | void |
| 5880 | reset() |
| 5881 | { } |
| 5882 | |
| 5883 | /** |
| 5884 | * @brief Return the intervals of the distribution. |
| 5885 | */ |
| 5886 | std::vector<_RealType> |
| 5887 | intervals() const |
| 5888 | { |
| 5889 | if (_M_param._M_int.empty()) |
| 5890 | { |
| 5891 | std::vector<_RealType> __tmp(2); |
| 5892 | __tmp[1] = _RealType(1); |
| 5893 | return __tmp; |
| 5894 | } |
| 5895 | else |
| 5896 | return _M_param._M_int; |
| 5897 | } |
| 5898 | |
| 5899 | /** |
| 5900 | * @brief Return a vector of the probability densities of the |
| 5901 | * distribution. |
| 5902 | */ |
| 5903 | std::vector<double> |
| 5904 | densities() const |
| 5905 | { |
| 5906 | return _M_param._M_den.empty() |
| 5907 | ? std::vector<double>(2, 1.0) : _M_param._M_den; |
| 5908 | } |
| 5909 | |
| 5910 | /** |
| 5911 | * @brief Returns the parameter set of the distribution. |
| 5912 | */ |
| 5913 | param_type |
| 5914 | param() const |
| 5915 | { return _M_param; } |
| 5916 | |
| 5917 | /** |
| 5918 | * @brief Sets the parameter set of the distribution. |
| 5919 | * @param __param The new parameter set of the distribution. |
| 5920 | */ |
| 5921 | void |
| 5922 | param(const param_type& __param) |
| 5923 | { _M_param = __param; } |
| 5924 | |
| 5925 | /** |
| 5926 | * @brief Returns the greatest lower bound value of the distribution. |
| 5927 | */ |
| 5928 | result_type |
| 5929 | min() const |
| 5930 | { |
| 5931 | return _M_param._M_int.empty() |
| 5932 | ? result_type(0) : _M_param._M_int.front(); |
| 5933 | } |
| 5934 | |
| 5935 | /** |
| 5936 | * @brief Returns the least upper bound value of the distribution. |
| 5937 | */ |
| 5938 | result_type |
| 5939 | max() const |
| 5940 | { |
| 5941 | return _M_param._M_int.empty() |
| 5942 | ? result_type(1) : _M_param._M_int.back(); |
| 5943 | } |
| 5944 | |
| 5945 | /** |
| 5946 | * @brief Generating functions. |
| 5947 | */ |
| 5948 | template<typename _UniformRandomNumberGenerator> |
| 5949 | result_type |
| 5950 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5951 | { return this->operator()(__urng, _M_param); } |
| 5952 | |
| 5953 | template<typename _UniformRandomNumberGenerator> |
| 5954 | result_type |
| 5955 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5956 | const param_type& __p); |
| 5957 | |
| 5958 | template<typename _ForwardIterator, |
| 5959 | typename _UniformRandomNumberGenerator> |
| 5960 | void |
| 5961 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5962 | _UniformRandomNumberGenerator& __urng) |
| 5963 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5964 | |
| 5965 | template<typename _ForwardIterator, |
| 5966 | typename _UniformRandomNumberGenerator> |
| 5967 | void |
| 5968 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5969 | _UniformRandomNumberGenerator& __urng, |
| 5970 | const param_type& __p) |
| 5971 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5972 | |
| 5973 | template<typename _UniformRandomNumberGenerator> |
| 5974 | void |
| 5975 | __generate(result_type* __f, result_type* __t, |
| 5976 | _UniformRandomNumberGenerator& __urng, |
| 5977 | const param_type& __p) |
| 5978 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5979 | |
| 5980 | /** |
| 5981 | * @brief Return true if two piecewise linear distributions have the |
| 5982 | * same parameters. |
| 5983 | */ |
| 5984 | friend bool |
| 5985 | operator==(const piecewise_linear_distribution& __d1, |
| 5986 | const piecewise_linear_distribution& __d2) |
| 5987 | { return __d1._M_param == __d2._M_param; } |
| 5988 | |
| 5989 | /** |
| 5990 | * @brief Inserts a %piecewise_linear_distribution random number |
| 5991 | * distribution @p __x into the output stream @p __os. |
| 5992 | * |
| 5993 | * @param __os An output stream. |
| 5994 | * @param __x A %piecewise_linear_distribution random number |
| 5995 | * distribution. |
| 5996 | * |
| 5997 | * @returns The output stream with the state of @p __x inserted or in |
| 5998 | * an error state. |
| 5999 | */ |
| 6000 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 6001 | friend std::basic_ostream<_CharT, _Traits>& |
| 6002 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 6003 | const std::piecewise_linear_distribution<_RealType1>& __x); |
| 6004 | |
| 6005 | /** |
| 6006 | * @brief Extracts a %piecewise_linear_distribution random number |
| 6007 | * distribution @p __x from the input stream @p __is. |
| 6008 | * |
| 6009 | * @param __is An input stream. |
| 6010 | * @param __x A %piecewise_linear_distribution random number |
| 6011 | * generator engine. |
| 6012 | * |
| 6013 | * @returns The input stream with @p __x extracted or in an error |
| 6014 | * state. |
| 6015 | */ |
| 6016 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 6017 | friend std::basic_istream<_CharT, _Traits>& |
| 6018 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 6019 | std::piecewise_linear_distribution<_RealType1>& __x); |
| 6020 | |
| 6021 | private: |
| 6022 | template<typename _ForwardIterator, |
| 6023 | typename _UniformRandomNumberGenerator> |
| 6024 | void |
| 6025 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 6026 | _UniformRandomNumberGenerator& __urng, |
| 6027 | const param_type& __p); |
| 6028 | |
| 6029 | param_type _M_param; |
| 6030 | }; |
| 6031 | |
| 6032 | /** |
| 6033 | * @brief Return true if two piecewise linear distributions have |
| 6034 | * different parameters. |
| 6035 | */ |
| 6036 | template<typename _RealType> |
| 6037 | inline bool |
| 6038 | operator!=(const std::piecewise_linear_distribution<_RealType>& __d1, |
| 6039 | const std::piecewise_linear_distribution<_RealType>& __d2) |
| 6040 | { return !(__d1 == __d2); } |
| 6041 | |
| 6042 | |
| 6043 | /* @} */ // group random_distributions_poisson |
| 6044 | |
| 6045 | /* @} */ // group random_distributions |
| 6046 | |
| 6047 | /** |
| 6048 | * @addtogroup random_utilities Random Number Utilities |
| 6049 | * @ingroup random |
| 6050 | * @{ |
| 6051 | */ |
| 6052 | |
| 6053 | /** |
| 6054 | * @brief The seed_seq class generates sequences of seeds for random |
| 6055 | * number generators. |
| 6056 | */ |
| 6057 | class seed_seq |
| 6058 | { |
| 6059 | public: |
| 6060 | /** The type of the seed vales. */ |
| 6061 | typedef uint_least32_t result_type; |
| 6062 | |
| 6063 | /** Default constructor. */ |
| 6064 | seed_seq() noexcept |
| 6065 | : _M_v() |
| 6066 | { } |
| 6067 | |
| 6068 | template<typename _IntType> |
| 6069 | seed_seq(std::initializer_list<_IntType> il); |
| 6070 | |
| 6071 | template<typename _InputIterator> |
| 6072 | seed_seq(_InputIterator __begin, _InputIterator __end); |
| 6073 | |
| 6074 | // generating functions |
| 6075 | template<typename _RandomAccessIterator> |
| 6076 | void |
| 6077 | generate(_RandomAccessIterator __begin, _RandomAccessIterator __end); |
| 6078 | |
| 6079 | // property functions |
| 6080 | size_t size() const noexcept |
| 6081 | { return _M_v.size(); } |
| 6082 | |
| 6083 | template<typename _OutputIterator> |
| 6084 | void |
| 6085 | param(_OutputIterator __dest) const |
| 6086 | { std::copy(_M_v.begin(), _M_v.end(), __dest); } |
| 6087 | |
| 6088 | // no copy functions |
| 6089 | seed_seq(const seed_seq&) = delete; |
| 6090 | seed_seq& operator=(const seed_seq&) = delete; |
| 6091 | |
| 6092 | private: |
| 6093 | std::vector<result_type> _M_v; |
| 6094 | }; |
| 6095 | |
| 6096 | /* @} */ // group random_utilities |
| 6097 | |
| 6098 | /* @} */ // group random |
| 6099 | |
| 6100 | _GLIBCXX_END_NAMESPACE_VERSION |
| 6101 | } // namespace std |
| 6102 | |
| 6103 | #endif |
| 6104 | |