| 1 | // random number generation (out of line) -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2009-2019 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 |  | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 |  | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file bits/random.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{random} | 
| 28 |  */ | 
| 29 |  | 
| 30 | #ifndef _RANDOM_TCC | 
| 31 | #define _RANDOM_TCC 1 | 
| 32 |  | 
| 33 | #include <numeric> // std::accumulate and std::partial_sum | 
| 34 |  | 
| 35 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 36 | { | 
| 37 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 38 |  | 
| 39 |   /* | 
| 40 |    * (Further) implementation-space details. | 
| 41 |    */ | 
| 42 |   namespace __detail | 
| 43 |   { | 
| 44 |     // General case for x = (ax + c) mod m -- use Schrage's algorithm | 
| 45 |     // to avoid integer overflow. | 
| 46 |     // | 
| 47 |     // Preconditions:  a > 0, m > 0. | 
| 48 |     // | 
| 49 |     // Note: only works correctly for __m % __a < __m / __a. | 
| 50 |     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> | 
| 51 |       _Tp | 
| 52 |       _Mod<_Tp, __m, __a, __c, false, true>:: | 
| 53 |       __calc(_Tp __x) | 
| 54 |       { | 
| 55 | 	if (__a == 1) | 
| 56 | 	  __x %= __m; | 
| 57 | 	else | 
| 58 | 	  { | 
| 59 | 	    static const _Tp __q = __m / __a; | 
| 60 | 	    static const _Tp __r = __m % __a; | 
| 61 |  | 
| 62 | 	    _Tp __t1 = __a * (__x % __q); | 
| 63 | 	    _Tp __t2 = __r * (__x / __q); | 
| 64 | 	    if (__t1 >= __t2) | 
| 65 | 	      __x = __t1 - __t2; | 
| 66 | 	    else | 
| 67 | 	      __x = __m - __t2 + __t1; | 
| 68 | 	  } | 
| 69 |  | 
| 70 | 	if (__c != 0) | 
| 71 | 	  { | 
| 72 | 	    const _Tp __d = __m - __x; | 
| 73 | 	    if (__d > __c) | 
| 74 | 	      __x += __c; | 
| 75 | 	    else | 
| 76 | 	      __x = __c - __d; | 
| 77 | 	  } | 
| 78 | 	return __x; | 
| 79 |       } | 
| 80 |  | 
| 81 |     template<typename _InputIterator, typename _OutputIterator, | 
| 82 | 	     typename _Tp> | 
| 83 |       _OutputIterator | 
| 84 |       __normalize(_InputIterator __first, _InputIterator __last, | 
| 85 | 		  _OutputIterator __result, const _Tp& __factor) | 
| 86 |       { | 
| 87 | 	for (; __first != __last; ++__first, ++__result) | 
| 88 | 	  *__result = *__first / __factor; | 
| 89 | 	return __result; | 
| 90 |       } | 
| 91 |  | 
| 92 |   } // namespace __detail | 
| 93 |  | 
| 94 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 95 |     constexpr _UIntType | 
| 96 |     linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; | 
| 97 |  | 
| 98 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 99 |     constexpr _UIntType | 
| 100 |     linear_congruential_engine<_UIntType, __a, __c, __m>::increment; | 
| 101 |  | 
| 102 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 103 |     constexpr _UIntType | 
| 104 |     linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; | 
| 105 |  | 
| 106 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 107 |     constexpr _UIntType | 
| 108 |     linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; | 
| 109 |  | 
| 110 |   /** | 
| 111 |    * Seeds the LCR with integral value @p __s, adjusted so that the | 
| 112 |    * ring identity is never a member of the convergence set. | 
| 113 |    */ | 
| 114 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 115 |     void | 
| 116 |     linear_congruential_engine<_UIntType, __a, __c, __m>:: | 
| 117 |     seed(result_type __s) | 
| 118 |     { | 
| 119 |       if ((__detail::__mod<_UIntType, __m>(__c) == 0) | 
| 120 | 	  && (__detail::__mod<_UIntType, __m>(__s) == 0)) | 
| 121 | 	_M_x = 1; | 
| 122 |       else | 
| 123 | 	_M_x = __detail::__mod<_UIntType, __m>(__s); | 
| 124 |     } | 
| 125 |  | 
| 126 |   /** | 
| 127 |    * Seeds the LCR engine with a value generated by @p __q. | 
| 128 |    */ | 
| 129 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 130 |     template<typename _Sseq> | 
| 131 |       auto | 
| 132 |       linear_congruential_engine<_UIntType, __a, __c, __m>:: | 
| 133 |       seed(_Sseq& __q) | 
| 134 |       -> _If_seed_seq<_Sseq> | 
| 135 |       { | 
| 136 | 	const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits | 
| 137 | 	                                : std::__lg(__m); | 
| 138 | 	const _UIntType __k = (__k0 + 31) / 32; | 
| 139 | 	uint_least32_t __arr[__k + 3]; | 
| 140 | 	__q.generate(__arr + 0, __arr + __k + 3); | 
| 141 | 	_UIntType __factor = 1u; | 
| 142 | 	_UIntType __sum = 0u; | 
| 143 | 	for (size_t __j = 0; __j < __k; ++__j) | 
| 144 | 	  { | 
| 145 | 	    __sum += __arr[__j + 3] * __factor; | 
| 146 | 	    __factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 147 | 	  } | 
| 148 | 	seed(__sum); | 
| 149 |       } | 
| 150 |  | 
| 151 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, | 
| 152 | 	   typename _CharT, typename _Traits> | 
| 153 |     std::basic_ostream<_CharT, _Traits>& | 
| 154 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 155 | 	       const linear_congruential_engine<_UIntType, | 
| 156 | 						__a, __c, __m>& __lcr) | 
| 157 |     { | 
| 158 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 159 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 160 |  | 
| 161 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 162 |       const _CharT __fill = __os.fill(); | 
| 163 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 164 |       __os.fill(__os.widen(' ')); | 
| 165 |  | 
| 166 |       __os << __lcr._M_x; | 
| 167 |  | 
| 168 |       __os.flags(__flags); | 
| 169 |       __os.fill(__fill); | 
| 170 |       return __os; | 
| 171 |     } | 
| 172 |  | 
| 173 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, | 
| 174 | 	   typename _CharT, typename _Traits> | 
| 175 |     std::basic_istream<_CharT, _Traits>& | 
| 176 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 177 | 	       linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) | 
| 178 |     { | 
| 179 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 180 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 181 |  | 
| 182 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 183 |       __is.flags(__ios_base::dec); | 
| 184 |  | 
| 185 |       __is >> __lcr._M_x; | 
| 186 |  | 
| 187 |       __is.flags(__flags); | 
| 188 |       return __is; | 
| 189 |     } | 
| 190 |  | 
| 191 |  | 
| 192 |   template<typename _UIntType, | 
| 193 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 194 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 195 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 196 | 	   _UIntType __f> | 
| 197 |     constexpr size_t | 
| 198 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 199 | 			    __s, __b, __t, __c, __l, __f>::word_size; | 
| 200 |  | 
| 201 |   template<typename _UIntType, | 
| 202 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 203 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 204 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 205 | 	   _UIntType __f> | 
| 206 |     constexpr size_t | 
| 207 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 208 | 			    __s, __b, __t, __c, __l, __f>::state_size; | 
| 209 |  | 
| 210 |   template<typename _UIntType, | 
| 211 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 212 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 213 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 214 | 	   _UIntType __f> | 
| 215 |     constexpr size_t | 
| 216 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 217 | 			    __s, __b, __t, __c, __l, __f>::shift_size; | 
| 218 |  | 
| 219 |   template<typename _UIntType, | 
| 220 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 221 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 222 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 223 | 	   _UIntType __f> | 
| 224 |     constexpr size_t | 
| 225 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 226 | 			    __s, __b, __t, __c, __l, __f>::mask_bits; | 
| 227 |  | 
| 228 |   template<typename _UIntType, | 
| 229 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 230 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 231 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 232 | 	   _UIntType __f> | 
| 233 |     constexpr _UIntType | 
| 234 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 235 | 			    __s, __b, __t, __c, __l, __f>::xor_mask; | 
| 236 |  | 
| 237 |   template<typename _UIntType, | 
| 238 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 239 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 240 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 241 | 	   _UIntType __f> | 
| 242 |     constexpr size_t | 
| 243 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 244 | 			    __s, __b, __t, __c, __l, __f>::tempering_u; | 
| 245 |     | 
| 246 |   template<typename _UIntType, | 
| 247 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 248 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 249 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 250 | 	   _UIntType __f> | 
| 251 |     constexpr _UIntType | 
| 252 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 253 | 			    __s, __b, __t, __c, __l, __f>::tempering_d; | 
| 254 |  | 
| 255 |   template<typename _UIntType, | 
| 256 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 257 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 258 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 259 | 	   _UIntType __f> | 
| 260 |     constexpr size_t | 
| 261 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 262 | 			    __s, __b, __t, __c, __l, __f>::tempering_s; | 
| 263 |  | 
| 264 |   template<typename _UIntType, | 
| 265 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 266 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 267 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 268 | 	   _UIntType __f> | 
| 269 |     constexpr _UIntType | 
| 270 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 271 | 			    __s, __b, __t, __c, __l, __f>::tempering_b; | 
| 272 |  | 
| 273 |   template<typename _UIntType, | 
| 274 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 275 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 276 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 277 | 	   _UIntType __f> | 
| 278 |     constexpr size_t | 
| 279 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 280 | 			    __s, __b, __t, __c, __l, __f>::tempering_t; | 
| 281 |  | 
| 282 |   template<typename _UIntType, | 
| 283 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 284 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 285 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 286 | 	   _UIntType __f> | 
| 287 |     constexpr _UIntType | 
| 288 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 289 | 			    __s, __b, __t, __c, __l, __f>::tempering_c; | 
| 290 |  | 
| 291 |   template<typename _UIntType, | 
| 292 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 293 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 294 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 295 | 	   _UIntType __f> | 
| 296 |     constexpr size_t | 
| 297 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 298 | 			    __s, __b, __t, __c, __l, __f>::tempering_l; | 
| 299 |  | 
| 300 |   template<typename _UIntType, | 
| 301 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 302 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 303 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 304 | 	   _UIntType __f> | 
| 305 |     constexpr _UIntType | 
| 306 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 307 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 308 |                                               initialization_multiplier; | 
| 309 |  | 
| 310 |   template<typename _UIntType, | 
| 311 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 312 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 313 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 314 | 	   _UIntType __f> | 
| 315 |     constexpr _UIntType | 
| 316 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 317 | 			    __s, __b, __t, __c, __l, __f>::default_seed; | 
| 318 |  | 
| 319 |   template<typename _UIntType, | 
| 320 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 321 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 322 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 323 | 	   _UIntType __f> | 
| 324 |     void | 
| 325 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 326 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 327 |     seed(result_type __sd) | 
| 328 |     { | 
| 329 |       _M_x[0] = __detail::__mod<_UIntType, | 
| 330 | 	__detail::_Shift<_UIntType, __w>::__value>(__sd); | 
| 331 |  | 
| 332 |       for (size_t __i = 1; __i < state_size; ++__i) | 
| 333 | 	{ | 
| 334 | 	  _UIntType __x = _M_x[__i - 1]; | 
| 335 | 	  __x ^= __x >> (__w - 2); | 
| 336 | 	  __x *= __f; | 
| 337 | 	  __x += __detail::__mod<_UIntType, __n>(__i); | 
| 338 | 	  _M_x[__i] = __detail::__mod<_UIntType, | 
| 339 | 	    __detail::_Shift<_UIntType, __w>::__value>(__x); | 
| 340 | 	} | 
| 341 |       _M_p = state_size; | 
| 342 |     } | 
| 343 |  | 
| 344 |   template<typename _UIntType, | 
| 345 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 346 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 347 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 348 | 	   _UIntType __f> | 
| 349 |     template<typename _Sseq> | 
| 350 |       auto | 
| 351 |       mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 352 | 			      __s, __b, __t, __c, __l, __f>:: | 
| 353 |       seed(_Sseq& __q) | 
| 354 |       -> _If_seed_seq<_Sseq> | 
| 355 |       { | 
| 356 | 	const _UIntType __upper_mask = (~_UIntType()) << __r; | 
| 357 | 	const size_t __k = (__w + 31) / 32; | 
| 358 | 	uint_least32_t __arr[__n * __k]; | 
| 359 | 	__q.generate(__arr + 0, __arr + __n * __k); | 
| 360 |  | 
| 361 | 	bool __zero = true; | 
| 362 | 	for (size_t __i = 0; __i < state_size; ++__i) | 
| 363 | 	  { | 
| 364 | 	    _UIntType __factor = 1u; | 
| 365 | 	    _UIntType __sum = 0u; | 
| 366 | 	    for (size_t __j = 0; __j < __k; ++__j) | 
| 367 | 	      { | 
| 368 | 		__sum += __arr[__k * __i + __j] * __factor; | 
| 369 | 		__factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 370 | 	      } | 
| 371 | 	    _M_x[__i] = __detail::__mod<_UIntType, | 
| 372 | 	      __detail::_Shift<_UIntType, __w>::__value>(__sum); | 
| 373 |  | 
| 374 | 	    if (__zero) | 
| 375 | 	      { | 
| 376 | 		if (__i == 0) | 
| 377 | 		  { | 
| 378 | 		    if ((_M_x[0] & __upper_mask) != 0u) | 
| 379 | 		      __zero = false; | 
| 380 | 		  } | 
| 381 | 		else if (_M_x[__i] != 0u) | 
| 382 | 		  __zero = false; | 
| 383 | 	      } | 
| 384 | 	  } | 
| 385 |         if (__zero) | 
| 386 |           _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; | 
| 387 | 	_M_p = state_size; | 
| 388 |       } | 
| 389 |  | 
| 390 |   template<typename _UIntType, size_t __w, | 
| 391 | 	   size_t __n, size_t __m, size_t __r, | 
| 392 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 393 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 394 | 	   _UIntType __f> | 
| 395 |     void | 
| 396 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 397 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 398 |     _M_gen_rand(void) | 
| 399 |     { | 
| 400 |       const _UIntType __upper_mask = (~_UIntType()) << __r; | 
| 401 |       const _UIntType __lower_mask = ~__upper_mask; | 
| 402 |  | 
| 403 |       for (size_t __k = 0; __k < (__n - __m); ++__k) | 
| 404 |         { | 
| 405 | 	  _UIntType __y = ((_M_x[__k] & __upper_mask) | 
| 406 | 			   | (_M_x[__k + 1] & __lower_mask)); | 
| 407 | 	  _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) | 
| 408 | 		       ^ ((__y & 0x01) ? __a : 0)); | 
| 409 |         } | 
| 410 |  | 
| 411 |       for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) | 
| 412 | 	{ | 
| 413 | 	  _UIntType __y = ((_M_x[__k] & __upper_mask) | 
| 414 | 			   | (_M_x[__k + 1] & __lower_mask)); | 
| 415 | 	  _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) | 
| 416 | 		       ^ ((__y & 0x01) ? __a : 0)); | 
| 417 | 	} | 
| 418 |  | 
| 419 |       _UIntType __y = ((_M_x[__n - 1] & __upper_mask) | 
| 420 | 		       | (_M_x[0] & __lower_mask)); | 
| 421 |       _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) | 
| 422 | 		       ^ ((__y & 0x01) ? __a : 0)); | 
| 423 |       _M_p = 0; | 
| 424 |     } | 
| 425 |  | 
| 426 |   template<typename _UIntType, size_t __w, | 
| 427 | 	   size_t __n, size_t __m, size_t __r, | 
| 428 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 429 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 430 | 	   _UIntType __f> | 
| 431 |     void | 
| 432 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 433 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 434 |     discard(unsigned long long __z) | 
| 435 |     { | 
| 436 |       while (__z > state_size - _M_p) | 
| 437 | 	{ | 
| 438 | 	  __z -= state_size - _M_p; | 
| 439 | 	  _M_gen_rand(); | 
| 440 | 	} | 
| 441 |       _M_p += __z; | 
| 442 |     } | 
| 443 |  | 
| 444 |   template<typename _UIntType, size_t __w, | 
| 445 | 	   size_t __n, size_t __m, size_t __r, | 
| 446 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 447 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 448 | 	   _UIntType __f> | 
| 449 |     typename | 
| 450 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 451 | 			    __s, __b, __t, __c, __l, __f>::result_type | 
| 452 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 453 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 454 |     operator()() | 
| 455 |     { | 
| 456 |       // Reload the vector - cost is O(n) amortized over n calls. | 
| 457 |       if (_M_p >= state_size) | 
| 458 | 	_M_gen_rand(); | 
| 459 |  | 
| 460 |       // Calculate o(x(i)). | 
| 461 |       result_type __z = _M_x[_M_p++]; | 
| 462 |       __z ^= (__z >> __u) & __d; | 
| 463 |       __z ^= (__z << __s) & __b; | 
| 464 |       __z ^= (__z << __t) & __c; | 
| 465 |       __z ^= (__z >> __l); | 
| 466 |  | 
| 467 |       return __z; | 
| 468 |     } | 
| 469 |  | 
| 470 |   template<typename _UIntType, size_t __w, | 
| 471 | 	   size_t __n, size_t __m, size_t __r, | 
| 472 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 473 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 474 | 	   _UIntType __f, typename _CharT, typename _Traits> | 
| 475 |     std::basic_ostream<_CharT, _Traits>& | 
| 476 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 477 | 	       const mersenne_twister_engine<_UIntType, __w, __n, __m, | 
| 478 | 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) | 
| 479 |     { | 
| 480 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 481 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 482 |  | 
| 483 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 484 |       const _CharT __fill = __os.fill(); | 
| 485 |       const _CharT __space = __os.widen(' '); | 
| 486 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 487 |       __os.fill(__space); | 
| 488 |  | 
| 489 |       for (size_t __i = 0; __i < __n; ++__i) | 
| 490 | 	__os << __x._M_x[__i] << __space; | 
| 491 |       __os << __x._M_p; | 
| 492 |  | 
| 493 |       __os.flags(__flags); | 
| 494 |       __os.fill(__fill); | 
| 495 |       return __os; | 
| 496 |     } | 
| 497 |  | 
| 498 |   template<typename _UIntType, size_t __w, | 
| 499 | 	   size_t __n, size_t __m, size_t __r, | 
| 500 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 501 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 502 | 	   _UIntType __f, typename _CharT, typename _Traits> | 
| 503 |     std::basic_istream<_CharT, _Traits>& | 
| 504 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 505 | 	       mersenne_twister_engine<_UIntType, __w, __n, __m, | 
| 506 | 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) | 
| 507 |     { | 
| 508 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 509 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 510 |  | 
| 511 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 512 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 513 |  | 
| 514 |       for (size_t __i = 0; __i < __n; ++__i) | 
| 515 | 	__is >> __x._M_x[__i]; | 
| 516 |       __is >> __x._M_p; | 
| 517 |  | 
| 518 |       __is.flags(__flags); | 
| 519 |       return __is; | 
| 520 |     } | 
| 521 |  | 
| 522 |  | 
| 523 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 524 |     constexpr size_t | 
| 525 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; | 
| 526 |  | 
| 527 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 528 |     constexpr size_t | 
| 529 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; | 
| 530 |  | 
| 531 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 532 |     constexpr size_t | 
| 533 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; | 
| 534 |  | 
| 535 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 536 |     constexpr _UIntType | 
| 537 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; | 
| 538 |  | 
| 539 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 540 |     void | 
| 541 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 542 |     seed(result_type __value) | 
| 543 |     { | 
| 544 |       std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u> | 
| 545 | 	__lcg(__value == 0u ? default_seed : __value); | 
| 546 |  | 
| 547 |       const size_t __n = (__w + 31) / 32; | 
| 548 |  | 
| 549 |       for (size_t __i = 0; __i < long_lag; ++__i) | 
| 550 | 	{ | 
| 551 | 	  _UIntType __sum = 0u; | 
| 552 | 	  _UIntType __factor = 1u; | 
| 553 | 	  for (size_t __j = 0; __j < __n; ++__j) | 
| 554 | 	    { | 
| 555 | 	      __sum += __detail::__mod<uint_least32_t, | 
| 556 | 		       __detail::_Shift<uint_least32_t, 32>::__value> | 
| 557 | 			 (__lcg()) * __factor; | 
| 558 | 	      __factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 559 | 	    } | 
| 560 | 	  _M_x[__i] = __detail::__mod<_UIntType, | 
| 561 | 	    __detail::_Shift<_UIntType, __w>::__value>(__sum); | 
| 562 | 	} | 
| 563 |       _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; | 
| 564 |       _M_p = 0; | 
| 565 |     } | 
| 566 |  | 
| 567 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 568 |     template<typename _Sseq> | 
| 569 |       auto | 
| 570 |       subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 571 |       seed(_Sseq& __q) | 
| 572 |       -> _If_seed_seq<_Sseq> | 
| 573 |       { | 
| 574 | 	const size_t __k = (__w + 31) / 32; | 
| 575 | 	uint_least32_t __arr[__r * __k]; | 
| 576 | 	__q.generate(__arr + 0, __arr + __r * __k); | 
| 577 |  | 
| 578 | 	for (size_t __i = 0; __i < long_lag; ++__i) | 
| 579 | 	  { | 
| 580 | 	    _UIntType __sum = 0u; | 
| 581 | 	    _UIntType __factor = 1u; | 
| 582 | 	    for (size_t __j = 0; __j < __k; ++__j) | 
| 583 | 	      { | 
| 584 | 		__sum += __arr[__k * __i + __j] * __factor; | 
| 585 | 		__factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 586 | 	      } | 
| 587 | 	    _M_x[__i] = __detail::__mod<_UIntType, | 
| 588 | 	      __detail::_Shift<_UIntType, __w>::__value>(__sum); | 
| 589 | 	  } | 
| 590 | 	_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; | 
| 591 | 	_M_p = 0; | 
| 592 |       } | 
| 593 |  | 
| 594 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 595 |     typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 596 | 	     result_type | 
| 597 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 598 |     operator()() | 
| 599 |     { | 
| 600 |       // Derive short lag index from current index. | 
| 601 |       long __ps = _M_p - short_lag; | 
| 602 |       if (__ps < 0) | 
| 603 | 	__ps += long_lag; | 
| 604 |  | 
| 605 |       // Calculate new x(i) without overflow or division. | 
| 606 |       // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry | 
| 607 |       // cannot overflow. | 
| 608 |       _UIntType __xi; | 
| 609 |       if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) | 
| 610 | 	{ | 
| 611 | 	  __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; | 
| 612 | 	  _M_carry = 0; | 
| 613 | 	} | 
| 614 |       else | 
| 615 | 	{ | 
| 616 | 	  __xi = (__detail::_Shift<_UIntType, __w>::__value | 
| 617 | 		  - _M_x[_M_p] - _M_carry + _M_x[__ps]); | 
| 618 | 	  _M_carry = 1; | 
| 619 | 	} | 
| 620 |       _M_x[_M_p] = __xi; | 
| 621 |  | 
| 622 |       // Adjust current index to loop around in ring buffer. | 
| 623 |       if (++_M_p >= long_lag) | 
| 624 | 	_M_p = 0; | 
| 625 |  | 
| 626 |       return __xi; | 
| 627 |     } | 
| 628 |  | 
| 629 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r, | 
| 630 | 	   typename _CharT, typename _Traits> | 
| 631 |     std::basic_ostream<_CharT, _Traits>& | 
| 632 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 633 | 	       const subtract_with_carry_engine<_UIntType, | 
| 634 | 						__w, __s, __r>& __x) | 
| 635 |     { | 
| 636 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 637 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 638 |  | 
| 639 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 640 |       const _CharT __fill = __os.fill(); | 
| 641 |       const _CharT __space = __os.widen(' '); | 
| 642 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 643 |       __os.fill(__space); | 
| 644 |  | 
| 645 |       for (size_t __i = 0; __i < __r; ++__i) | 
| 646 | 	__os << __x._M_x[__i] << __space; | 
| 647 |       __os << __x._M_carry << __space << __x._M_p; | 
| 648 |  | 
| 649 |       __os.flags(__flags); | 
| 650 |       __os.fill(__fill); | 
| 651 |       return __os; | 
| 652 |     } | 
| 653 |  | 
| 654 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r, | 
| 655 | 	   typename _CharT, typename _Traits> | 
| 656 |     std::basic_istream<_CharT, _Traits>& | 
| 657 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 658 | 	       subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) | 
| 659 |     { | 
| 660 |       typedef std::basic_ostream<_CharT, _Traits>  __istream_type; | 
| 661 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 662 |  | 
| 663 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 664 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 665 |  | 
| 666 |       for (size_t __i = 0; __i < __r; ++__i) | 
| 667 | 	__is >> __x._M_x[__i]; | 
| 668 |       __is >> __x._M_carry; | 
| 669 |       __is >> __x._M_p; | 
| 670 |  | 
| 671 |       __is.flags(__flags); | 
| 672 |       return __is; | 
| 673 |     } | 
| 674 |  | 
| 675 |  | 
| 676 |   template<typename _RandomNumberEngine, size_t __p, size_t __r> | 
| 677 |     constexpr size_t | 
| 678 |     discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; | 
| 679 |  | 
| 680 |   template<typename _RandomNumberEngine, size_t __p, size_t __r> | 
| 681 |     constexpr size_t | 
| 682 |     discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; | 
| 683 |  | 
| 684 |   template<typename _RandomNumberEngine, size_t __p, size_t __r> | 
| 685 |     typename discard_block_engine<_RandomNumberEngine, | 
| 686 | 			   __p, __r>::result_type | 
| 687 |     discard_block_engine<_RandomNumberEngine, __p, __r>:: | 
| 688 |     operator()() | 
| 689 |     { | 
| 690 |       if (_M_n >= used_block) | 
| 691 | 	{ | 
| 692 | 	  _M_b.discard(block_size - _M_n); | 
| 693 | 	  _M_n = 0; | 
| 694 | 	} | 
| 695 |       ++_M_n; | 
| 696 |       return _M_b(); | 
| 697 |     } | 
| 698 |  | 
| 699 |   template<typename _RandomNumberEngine, size_t __p, size_t __r, | 
| 700 | 	   typename _CharT, typename _Traits> | 
| 701 |     std::basic_ostream<_CharT, _Traits>& | 
| 702 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 703 | 	       const discard_block_engine<_RandomNumberEngine, | 
| 704 | 	       __p, __r>& __x) | 
| 705 |     { | 
| 706 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 707 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 708 |  | 
| 709 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 710 |       const _CharT __fill = __os.fill(); | 
| 711 |       const _CharT __space = __os.widen(' '); | 
| 712 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 713 |       __os.fill(__space); | 
| 714 |  | 
| 715 |       __os << __x.base() << __space << __x._M_n; | 
| 716 |  | 
| 717 |       __os.flags(__flags); | 
| 718 |       __os.fill(__fill); | 
| 719 |       return __os; | 
| 720 |     } | 
| 721 |  | 
| 722 |   template<typename _RandomNumberEngine, size_t __p, size_t __r, | 
| 723 | 	   typename _CharT, typename _Traits> | 
| 724 |     std::basic_istream<_CharT, _Traits>& | 
| 725 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 726 | 	       discard_block_engine<_RandomNumberEngine, __p, __r>& __x) | 
| 727 |     { | 
| 728 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 729 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 730 |  | 
| 731 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 732 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 733 |  | 
| 734 |       __is >> __x._M_b >> __x._M_n; | 
| 735 |  | 
| 736 |       __is.flags(__flags); | 
| 737 |       return __is; | 
| 738 |     } | 
| 739 |  | 
| 740 |  | 
| 741 |   template<typename _RandomNumberEngine, size_t __w, typename _UIntType> | 
| 742 |     typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: | 
| 743 |       result_type | 
| 744 |     independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: | 
| 745 |     operator()() | 
| 746 |     { | 
| 747 |       typedef typename _RandomNumberEngine::result_type _Eresult_type; | 
| 748 |       const _Eresult_type __r | 
| 749 | 	= (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() | 
| 750 | 	   ? _M_b.max() - _M_b.min() + 1 : 0); | 
| 751 |       const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; | 
| 752 |       const unsigned __m = __r ? std::__lg(__r) : __edig; | 
| 753 |  | 
| 754 |       typedef typename std::common_type<_Eresult_type, result_type>::type | 
| 755 | 	__ctype; | 
| 756 |       const unsigned __cdig = std::numeric_limits<__ctype>::digits; | 
| 757 |  | 
| 758 |       unsigned __n, __n0; | 
| 759 |       __ctype __s0, __s1, __y0, __y1; | 
| 760 |  | 
| 761 |       for (size_t __i = 0; __i < 2; ++__i) | 
| 762 | 	{ | 
| 763 | 	  __n = (__w + __m - 1) / __m + __i; | 
| 764 | 	  __n0 = __n - __w % __n; | 
| 765 | 	  const unsigned __w0 = __w / __n;  // __w0 <= __m | 
| 766 |  | 
| 767 | 	  __s0 = 0; | 
| 768 | 	  __s1 = 0; | 
| 769 | 	  if (__w0 < __cdig) | 
| 770 | 	    { | 
| 771 | 	      __s0 = __ctype(1) << __w0; | 
| 772 | 	      __s1 = __s0 << 1; | 
| 773 | 	    } | 
| 774 |  | 
| 775 | 	  __y0 = 0; | 
| 776 | 	  __y1 = 0; | 
| 777 | 	  if (__r) | 
| 778 | 	    { | 
| 779 | 	      __y0 = __s0 * (__r / __s0); | 
| 780 | 	      if (__s1) | 
| 781 | 		__y1 = __s1 * (__r / __s1); | 
| 782 |  | 
| 783 | 	      if (__r - __y0 <= __y0 / __n) | 
| 784 | 		break; | 
| 785 | 	    } | 
| 786 | 	  else | 
| 787 | 	    break; | 
| 788 | 	} | 
| 789 |  | 
| 790 |       result_type __sum = 0; | 
| 791 |       for (size_t __k = 0; __k < __n0; ++__k) | 
| 792 | 	{ | 
| 793 | 	  __ctype __u; | 
| 794 | 	  do | 
| 795 | 	    __u = _M_b() - _M_b.min(); | 
| 796 | 	  while (__y0 && __u >= __y0); | 
| 797 | 	  __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); | 
| 798 | 	} | 
| 799 |       for (size_t __k = __n0; __k < __n; ++__k) | 
| 800 | 	{ | 
| 801 | 	  __ctype __u; | 
| 802 | 	  do | 
| 803 | 	    __u = _M_b() - _M_b.min(); | 
| 804 | 	  while (__y1 && __u >= __y1); | 
| 805 | 	  __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); | 
| 806 | 	} | 
| 807 |       return __sum; | 
| 808 |     } | 
| 809 |  | 
| 810 |  | 
| 811 |   template<typename _RandomNumberEngine, size_t __k> | 
| 812 |     constexpr size_t | 
| 813 |     shuffle_order_engine<_RandomNumberEngine, __k>::table_size; | 
| 814 |  | 
| 815 |   template<typename _RandomNumberEngine, size_t __k> | 
| 816 |     typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type | 
| 817 |     shuffle_order_engine<_RandomNumberEngine, __k>:: | 
| 818 |     operator()() | 
| 819 |     { | 
| 820 |       size_t __j = __k * ((_M_y - _M_b.min()) | 
| 821 | 			  / (_M_b.max() - _M_b.min() + 1.0L)); | 
| 822 |       _M_y = _M_v[__j]; | 
| 823 |       _M_v[__j] = _M_b(); | 
| 824 |  | 
| 825 |       return _M_y; | 
| 826 |     } | 
| 827 |  | 
| 828 |   template<typename _RandomNumberEngine, size_t __k, | 
| 829 | 	   typename _CharT, typename _Traits> | 
| 830 |     std::basic_ostream<_CharT, _Traits>& | 
| 831 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 832 | 	       const shuffle_order_engine<_RandomNumberEngine, __k>& __x) | 
| 833 |     { | 
| 834 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 835 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 836 |  | 
| 837 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 838 |       const _CharT __fill = __os.fill(); | 
| 839 |       const _CharT __space = __os.widen(' '); | 
| 840 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 841 |       __os.fill(__space); | 
| 842 |  | 
| 843 |       __os << __x.base(); | 
| 844 |       for (size_t __i = 0; __i < __k; ++__i) | 
| 845 | 	__os << __space << __x._M_v[__i]; | 
| 846 |       __os << __space << __x._M_y; | 
| 847 |  | 
| 848 |       __os.flags(__flags); | 
| 849 |       __os.fill(__fill); | 
| 850 |       return __os; | 
| 851 |     } | 
| 852 |  | 
| 853 |   template<typename _RandomNumberEngine, size_t __k, | 
| 854 | 	   typename _CharT, typename _Traits> | 
| 855 |     std::basic_istream<_CharT, _Traits>& | 
| 856 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 857 | 	       shuffle_order_engine<_RandomNumberEngine, __k>& __x) | 
| 858 |     { | 
| 859 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 860 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 861 |  | 
| 862 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 863 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 864 |  | 
| 865 |       __is >> __x._M_b; | 
| 866 |       for (size_t __i = 0; __i < __k; ++__i) | 
| 867 | 	__is >> __x._M_v[__i]; | 
| 868 |       __is >> __x._M_y; | 
| 869 |  | 
| 870 |       __is.flags(__flags); | 
| 871 |       return __is; | 
| 872 |     } | 
| 873 |  | 
| 874 |  | 
| 875 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 876 |     std::basic_ostream<_CharT, _Traits>& | 
| 877 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 878 | 	       const uniform_int_distribution<_IntType>& __x) | 
| 879 |     { | 
| 880 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 881 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 882 |  | 
| 883 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 884 |       const _CharT __fill = __os.fill(); | 
| 885 |       const _CharT __space = __os.widen(' '); | 
| 886 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 887 |       __os.fill(__space); | 
| 888 |  | 
| 889 |       __os << __x.a() << __space << __x.b(); | 
| 890 |  | 
| 891 |       __os.flags(__flags); | 
| 892 |       __os.fill(__fill); | 
| 893 |       return __os; | 
| 894 |     } | 
| 895 |  | 
| 896 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 897 |     std::basic_istream<_CharT, _Traits>& | 
| 898 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 899 | 	       uniform_int_distribution<_IntType>& __x) | 
| 900 |     { | 
| 901 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 902 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 903 |  | 
| 904 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 905 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 906 |  | 
| 907 |       _IntType __a, __b; | 
| 908 |       if (__is >> __a >> __b) | 
| 909 | 	__x.param(typename uniform_int_distribution<_IntType>:: | 
| 910 | 		  param_type(__a, __b)); | 
| 911 |  | 
| 912 |       __is.flags(__flags); | 
| 913 |       return __is; | 
| 914 |     } | 
| 915 |  | 
| 916 |  | 
| 917 |   template<typename _RealType> | 
| 918 |     template<typename _ForwardIterator, | 
| 919 | 	     typename _UniformRandomNumberGenerator> | 
| 920 |       void | 
| 921 |       uniform_real_distribution<_RealType>:: | 
| 922 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 923 | 		      _UniformRandomNumberGenerator& __urng, | 
| 924 | 		      const param_type& __p) | 
| 925 |       { | 
| 926 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 927 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 928 | 	  __aurng(__urng); | 
| 929 | 	auto __range = __p.b() - __p.a(); | 
| 930 | 	while (__f != __t) | 
| 931 | 	  *__f++ = __aurng() * __range + __p.a(); | 
| 932 |       } | 
| 933 |  | 
| 934 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 935 |     std::basic_ostream<_CharT, _Traits>& | 
| 936 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 937 | 	       const uniform_real_distribution<_RealType>& __x) | 
| 938 |     { | 
| 939 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 940 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 941 |  | 
| 942 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 943 |       const _CharT __fill = __os.fill(); | 
| 944 |       const std::streamsize __precision = __os.precision(); | 
| 945 |       const _CharT __space = __os.widen(' '); | 
| 946 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 947 |       __os.fill(__space); | 
| 948 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 949 |  | 
| 950 |       __os << __x.a() << __space << __x.b(); | 
| 951 |  | 
| 952 |       __os.flags(__flags); | 
| 953 |       __os.fill(__fill); | 
| 954 |       __os.precision(__precision); | 
| 955 |       return __os; | 
| 956 |     } | 
| 957 |  | 
| 958 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 959 |     std::basic_istream<_CharT, _Traits>& | 
| 960 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 961 | 	       uniform_real_distribution<_RealType>& __x) | 
| 962 |     { | 
| 963 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 964 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 965 |  | 
| 966 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 967 |       __is.flags(__ios_base::skipws); | 
| 968 |  | 
| 969 |       _RealType __a, __b; | 
| 970 |       if (__is >> __a >> __b) | 
| 971 | 	__x.param(typename uniform_real_distribution<_RealType>:: | 
| 972 | 		  param_type(__a, __b)); | 
| 973 |  | 
| 974 |       __is.flags(__flags); | 
| 975 |       return __is; | 
| 976 |     } | 
| 977 |  | 
| 978 |  | 
| 979 |   template<typename _ForwardIterator, | 
| 980 | 	   typename _UniformRandomNumberGenerator> | 
| 981 |     void | 
| 982 |     std::bernoulli_distribution:: | 
| 983 |     __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 984 | 		    _UniformRandomNumberGenerator& __urng, | 
| 985 | 		    const param_type& __p) | 
| 986 |     { | 
| 987 |       __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 988 |       __detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 989 | 	__aurng(__urng); | 
| 990 |       auto __limit = __p.p() * (__aurng.max() - __aurng.min()); | 
| 991 |  | 
| 992 |       while (__f != __t) | 
| 993 | 	*__f++ = (__aurng() - __aurng.min()) < __limit; | 
| 994 |     } | 
| 995 |  | 
| 996 |   template<typename _CharT, typename _Traits> | 
| 997 |     std::basic_ostream<_CharT, _Traits>& | 
| 998 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 999 | 	       const bernoulli_distribution& __x) | 
| 1000 |     { | 
| 1001 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1002 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1003 |  | 
| 1004 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1005 |       const _CharT __fill = __os.fill(); | 
| 1006 |       const std::streamsize __precision = __os.precision(); | 
| 1007 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1008 |       __os.fill(__os.widen(' ')); | 
| 1009 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1010 |  | 
| 1011 |       __os << __x.p(); | 
| 1012 |  | 
| 1013 |       __os.flags(__flags); | 
| 1014 |       __os.fill(__fill); | 
| 1015 |       __os.precision(__precision); | 
| 1016 |       return __os; | 
| 1017 |     } | 
| 1018 |  | 
| 1019 |  | 
| 1020 |   template<typename _IntType> | 
| 1021 |     template<typename _UniformRandomNumberGenerator> | 
| 1022 |       typename geometric_distribution<_IntType>::result_type | 
| 1023 |       geometric_distribution<_IntType>:: | 
| 1024 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1025 | 		 const param_type& __param) | 
| 1026 |       { | 
| 1027 | 	// About the epsilon thing see this thread: | 
| 1028 | 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html | 
| 1029 | 	const double __naf = | 
| 1030 | 	  (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1031 | 	// The largest _RealType convertible to _IntType. | 
| 1032 | 	const double __thr = | 
| 1033 | 	  std::numeric_limits<_IntType>::max() + __naf; | 
| 1034 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1035 | 	  __aurng(__urng); | 
| 1036 |  | 
| 1037 | 	double __cand; | 
| 1038 | 	do | 
| 1039 | 	  __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); | 
| 1040 | 	while (__cand >= __thr); | 
| 1041 |  | 
| 1042 | 	return result_type(__cand + __naf); | 
| 1043 |       } | 
| 1044 |  | 
| 1045 |   template<typename _IntType> | 
| 1046 |     template<typename _ForwardIterator, | 
| 1047 | 	     typename _UniformRandomNumberGenerator> | 
| 1048 |       void | 
| 1049 |       geometric_distribution<_IntType>:: | 
| 1050 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1051 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1052 | 		      const param_type& __param) | 
| 1053 |       { | 
| 1054 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1055 | 	// About the epsilon thing see this thread: | 
| 1056 | 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html | 
| 1057 | 	const double __naf = | 
| 1058 | 	  (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1059 | 	// The largest _RealType convertible to _IntType. | 
| 1060 | 	const double __thr = | 
| 1061 | 	  std::numeric_limits<_IntType>::max() + __naf; | 
| 1062 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1063 | 	  __aurng(__urng); | 
| 1064 |  | 
| 1065 | 	while (__f != __t) | 
| 1066 | 	  { | 
| 1067 | 	    double __cand; | 
| 1068 | 	    do | 
| 1069 | 	      __cand = std::floor(std::log(1.0 - __aurng()) | 
| 1070 | 				  / __param._M_log_1_p); | 
| 1071 | 	    while (__cand >= __thr); | 
| 1072 |  | 
| 1073 | 	    *__f++ = __cand + __naf; | 
| 1074 | 	  } | 
| 1075 |       } | 
| 1076 |  | 
| 1077 |   template<typename _IntType, | 
| 1078 | 	   typename _CharT, typename _Traits> | 
| 1079 |     std::basic_ostream<_CharT, _Traits>& | 
| 1080 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1081 | 	       const geometric_distribution<_IntType>& __x) | 
| 1082 |     { | 
| 1083 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1084 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1085 |  | 
| 1086 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1087 |       const _CharT __fill = __os.fill(); | 
| 1088 |       const std::streamsize __precision = __os.precision(); | 
| 1089 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1090 |       __os.fill(__os.widen(' ')); | 
| 1091 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1092 |  | 
| 1093 |       __os << __x.p(); | 
| 1094 |  | 
| 1095 |       __os.flags(__flags); | 
| 1096 |       __os.fill(__fill); | 
| 1097 |       __os.precision(__precision); | 
| 1098 |       return __os; | 
| 1099 |     } | 
| 1100 |  | 
| 1101 |   template<typename _IntType, | 
| 1102 | 	   typename _CharT, typename _Traits> | 
| 1103 |     std::basic_istream<_CharT, _Traits>& | 
| 1104 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1105 | 	       geometric_distribution<_IntType>& __x) | 
| 1106 |     { | 
| 1107 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 1108 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 1109 |  | 
| 1110 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1111 |       __is.flags(__ios_base::skipws); | 
| 1112 |  | 
| 1113 |       double __p; | 
| 1114 |       if (__is >> __p) | 
| 1115 | 	__x.param(typename geometric_distribution<_IntType>::param_type(__p)); | 
| 1116 |  | 
| 1117 |       __is.flags(__flags); | 
| 1118 |       return __is; | 
| 1119 |     } | 
| 1120 |  | 
| 1121 |   // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. | 
| 1122 |   template<typename _IntType> | 
| 1123 |     template<typename _UniformRandomNumberGenerator> | 
| 1124 |       typename negative_binomial_distribution<_IntType>::result_type | 
| 1125 |       negative_binomial_distribution<_IntType>:: | 
| 1126 |       operator()(_UniformRandomNumberGenerator& __urng) | 
| 1127 |       { | 
| 1128 | 	const double __y = _M_gd(__urng); | 
| 1129 |  | 
| 1130 | 	// XXX Is the constructor too slow? | 
| 1131 | 	std::poisson_distribution<result_type> __poisson(__y); | 
| 1132 | 	return __poisson(__urng); | 
| 1133 |       } | 
| 1134 |  | 
| 1135 |   template<typename _IntType> | 
| 1136 |     template<typename _UniformRandomNumberGenerator> | 
| 1137 |       typename negative_binomial_distribution<_IntType>::result_type | 
| 1138 |       negative_binomial_distribution<_IntType>:: | 
| 1139 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1140 | 		 const param_type& __p) | 
| 1141 |       { | 
| 1142 | 	typedef typename std::gamma_distribution<double>::param_type | 
| 1143 | 	  param_type; | 
| 1144 | 	 | 
| 1145 | 	const double __y = | 
| 1146 | 	  _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); | 
| 1147 |  | 
| 1148 | 	std::poisson_distribution<result_type> __poisson(__y); | 
| 1149 | 	return __poisson(__urng); | 
| 1150 |       } | 
| 1151 |  | 
| 1152 |   template<typename _IntType> | 
| 1153 |     template<typename _ForwardIterator, | 
| 1154 | 	     typename _UniformRandomNumberGenerator> | 
| 1155 |       void | 
| 1156 |       negative_binomial_distribution<_IntType>:: | 
| 1157 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1158 | 		      _UniformRandomNumberGenerator& __urng) | 
| 1159 |       { | 
| 1160 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1161 | 	while (__f != __t) | 
| 1162 | 	  { | 
| 1163 | 	    const double __y = _M_gd(__urng); | 
| 1164 |  | 
| 1165 | 	    // XXX Is the constructor too slow? | 
| 1166 | 	    std::poisson_distribution<result_type> __poisson(__y); | 
| 1167 | 	    *__f++ = __poisson(__urng); | 
| 1168 | 	  } | 
| 1169 |       } | 
| 1170 |  | 
| 1171 |   template<typename _IntType> | 
| 1172 |     template<typename _ForwardIterator, | 
| 1173 | 	     typename _UniformRandomNumberGenerator> | 
| 1174 |       void | 
| 1175 |       negative_binomial_distribution<_IntType>:: | 
| 1176 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1177 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1178 | 		      const param_type& __p) | 
| 1179 |       { | 
| 1180 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1181 | 	typename std::gamma_distribution<result_type>::param_type | 
| 1182 | 	  __p2(__p.k(), (1.0 - __p.p()) / __p.p()); | 
| 1183 |  | 
| 1184 | 	while (__f != __t) | 
| 1185 | 	  { | 
| 1186 | 	    const double __y = _M_gd(__urng, __p2); | 
| 1187 |  | 
| 1188 | 	    std::poisson_distribution<result_type> __poisson(__y); | 
| 1189 | 	    *__f++ = __poisson(__urng); | 
| 1190 | 	  } | 
| 1191 |       } | 
| 1192 |  | 
| 1193 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 1194 |     std::basic_ostream<_CharT, _Traits>& | 
| 1195 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1196 | 	       const negative_binomial_distribution<_IntType>& __x) | 
| 1197 |     { | 
| 1198 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1199 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1200 |  | 
| 1201 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1202 |       const _CharT __fill = __os.fill(); | 
| 1203 |       const std::streamsize __precision = __os.precision(); | 
| 1204 |       const _CharT __space = __os.widen(' '); | 
| 1205 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1206 |       __os.fill(__os.widen(' ')); | 
| 1207 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1208 |  | 
| 1209 |       __os << __x.k() << __space << __x.p() | 
| 1210 | 	   << __space << __x._M_gd; | 
| 1211 |  | 
| 1212 |       __os.flags(__flags); | 
| 1213 |       __os.fill(__fill); | 
| 1214 |       __os.precision(__precision); | 
| 1215 |       return __os; | 
| 1216 |     } | 
| 1217 |  | 
| 1218 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 1219 |     std::basic_istream<_CharT, _Traits>& | 
| 1220 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1221 | 	       negative_binomial_distribution<_IntType>& __x) | 
| 1222 |     { | 
| 1223 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 1224 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 1225 |  | 
| 1226 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1227 |       __is.flags(__ios_base::skipws); | 
| 1228 |  | 
| 1229 |       _IntType __k; | 
| 1230 |       double __p; | 
| 1231 |       if (__is >> __k >> __p >> __x._M_gd) | 
| 1232 | 	__x.param(typename negative_binomial_distribution<_IntType>:: | 
| 1233 | 		  param_type(__k, __p)); | 
| 1234 |  | 
| 1235 |       __is.flags(__flags); | 
| 1236 |       return __is; | 
| 1237 |     } | 
| 1238 |  | 
| 1239 |  | 
| 1240 |   template<typename _IntType> | 
| 1241 |     void | 
| 1242 |     poisson_distribution<_IntType>::param_type:: | 
| 1243 |     _M_initialize() | 
| 1244 |     { | 
| 1245 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1246 |       if (_M_mean >= 12) | 
| 1247 | 	{ | 
| 1248 | 	  const double __m = std::floor(_M_mean); | 
| 1249 | 	  _M_lm_thr = std::log(_M_mean); | 
| 1250 | 	  _M_lfm = std::lgamma(__m + 1); | 
| 1251 | 	  _M_sm = std::sqrt(__m); | 
| 1252 |  | 
| 1253 | 	  const double __pi_4 = 0.7853981633974483096156608458198757L; | 
| 1254 | 	  const double __dx = std::sqrt(2 * __m * std::log(32 * __m | 
| 1255 | 							      / __pi_4)); | 
| 1256 | 	  _M_d = std::round(std::max<double>(6.0, std::min(__m, __dx))); | 
| 1257 | 	  const double __cx = 2 * __m + _M_d; | 
| 1258 | 	  _M_scx = std::sqrt(__cx / 2); | 
| 1259 | 	  _M_1cx = 1 / __cx; | 
| 1260 |  | 
| 1261 | 	  _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx); | 
| 1262 | 	  _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) | 
| 1263 | 		/ _M_d; | 
| 1264 | 	} | 
| 1265 |       else | 
| 1266 | #endif | 
| 1267 | 	_M_lm_thr = std::exp(-_M_mean); | 
| 1268 |       } | 
| 1269 |  | 
| 1270 |   /** | 
| 1271 |    * A rejection algorithm when mean >= 12 and a simple method based | 
| 1272 |    * upon the multiplication of uniform random variates otherwise. | 
| 1273 |    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1274 |    * is defined. | 
| 1275 |    * | 
| 1276 |    * Reference: | 
| 1277 |    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
| 1278 |    * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). | 
| 1279 |    */ | 
| 1280 |   template<typename _IntType> | 
| 1281 |     template<typename _UniformRandomNumberGenerator> | 
| 1282 |       typename poisson_distribution<_IntType>::result_type | 
| 1283 |       poisson_distribution<_IntType>:: | 
| 1284 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1285 | 		 const param_type& __param) | 
| 1286 |       { | 
| 1287 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1288 | 	  __aurng(__urng); | 
| 1289 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1290 | 	if (__param.mean() >= 12) | 
| 1291 | 	  { | 
| 1292 | 	    double __x; | 
| 1293 |  | 
| 1294 | 	    // See comments above... | 
| 1295 | 	    const double __naf = | 
| 1296 | 	      (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1297 | 	    const double __thr = | 
| 1298 | 	      std::numeric_limits<_IntType>::max() + __naf; | 
| 1299 |  | 
| 1300 | 	    const double __m = std::floor(__param.mean()); | 
| 1301 | 	    // sqrt(pi / 2) | 
| 1302 | 	    const double __spi_2 = 1.2533141373155002512078826424055226L; | 
| 1303 | 	    const double __c1 = __param._M_sm * __spi_2; | 
| 1304 | 	    const double __c2 = __param._M_c2b + __c1; | 
| 1305 | 	    const double __c3 = __c2 + 1; | 
| 1306 | 	    const double __c4 = __c3 + 1; | 
| 1307 | 	    // 1 / 78 | 
| 1308 | 	    const double __178 = 0.0128205128205128205128205128205128L; | 
| 1309 | 	    // e^(1 / 78) | 
| 1310 | 	    const double __e178 = 1.0129030479320018583185514777512983L; | 
| 1311 | 	    const double __c5 = __c4 + __e178; | 
| 1312 | 	    const double __c = __param._M_cb + __c5; | 
| 1313 | 	    const double __2cx = 2 * (2 * __m + __param._M_d); | 
| 1314 |  | 
| 1315 | 	    bool __reject = true; | 
| 1316 | 	    do | 
| 1317 | 	      { | 
| 1318 | 		const double __u = __c * __aurng(); | 
| 1319 | 		const double __e = -std::log(1.0 - __aurng()); | 
| 1320 |  | 
| 1321 | 		double __w = 0.0; | 
| 1322 |  | 
| 1323 | 		if (__u <= __c1) | 
| 1324 | 		  { | 
| 1325 | 		    const double __n = _M_nd(__urng); | 
| 1326 | 		    const double __y = -std::abs(__n) * __param._M_sm - 1; | 
| 1327 | 		    __x = std::floor(__y); | 
| 1328 | 		    __w = -__n * __n / 2; | 
| 1329 | 		    if (__x < -__m) | 
| 1330 | 		      continue; | 
| 1331 | 		  } | 
| 1332 | 		else if (__u <= __c2) | 
| 1333 | 		  { | 
| 1334 | 		    const double __n = _M_nd(__urng); | 
| 1335 | 		    const double __y = 1 + std::abs(__n) * __param._M_scx; | 
| 1336 | 		    __x = std::ceil(__y); | 
| 1337 | 		    __w = __y * (2 - __y) * __param._M_1cx; | 
| 1338 | 		    if (__x > __param._M_d) | 
| 1339 | 		      continue; | 
| 1340 | 		  } | 
| 1341 | 		else if (__u <= __c3) | 
| 1342 | 		  // NB: This case not in the book, nor in the Errata, | 
| 1343 | 		  // but should be ok... | 
| 1344 | 		  __x = -1; | 
| 1345 | 		else if (__u <= __c4) | 
| 1346 | 		  __x = 0; | 
| 1347 | 		else if (__u <= __c5) | 
| 1348 | 		  { | 
| 1349 | 		    __x = 1; | 
| 1350 | 		    // Only in the Errata, see libstdc++/83237. | 
| 1351 | 		    __w = __178; | 
| 1352 | 		  } | 
| 1353 | 		else | 
| 1354 | 		  { | 
| 1355 | 		    const double __v = -std::log(1.0 - __aurng()); | 
| 1356 | 		    const double __y = __param._M_d | 
| 1357 | 				     + __v * __2cx / __param._M_d; | 
| 1358 | 		    __x = std::ceil(__y); | 
| 1359 | 		    __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); | 
| 1360 | 		  } | 
| 1361 |  | 
| 1362 | 		__reject = (__w - __e - __x * __param._M_lm_thr | 
| 1363 | 			    > __param._M_lfm - std::lgamma(__x + __m + 1)); | 
| 1364 |  | 
| 1365 | 		__reject |= __x + __m >= __thr; | 
| 1366 |  | 
| 1367 | 	      } while (__reject); | 
| 1368 |  | 
| 1369 | 	    return result_type(__x + __m + __naf); | 
| 1370 | 	  } | 
| 1371 | 	else | 
| 1372 | #endif | 
| 1373 | 	  { | 
| 1374 | 	    _IntType     __x = 0; | 
| 1375 | 	    double __prod = 1.0; | 
| 1376 |  | 
| 1377 | 	    do | 
| 1378 | 	      { | 
| 1379 | 		__prod *= __aurng(); | 
| 1380 | 		__x += 1; | 
| 1381 | 	      } | 
| 1382 | 	    while (__prod > __param._M_lm_thr); | 
| 1383 |  | 
| 1384 | 	    return __x - 1; | 
| 1385 | 	  } | 
| 1386 |       } | 
| 1387 |  | 
| 1388 |   template<typename _IntType> | 
| 1389 |     template<typename _ForwardIterator, | 
| 1390 | 	     typename _UniformRandomNumberGenerator> | 
| 1391 |       void | 
| 1392 |       poisson_distribution<_IntType>:: | 
| 1393 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1394 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1395 | 		      const param_type& __param) | 
| 1396 |       { | 
| 1397 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1398 | 	// We could duplicate everything from operator()... | 
| 1399 | 	while (__f != __t) | 
| 1400 | 	  *__f++ = this->operator()(__urng, __param); | 
| 1401 |       } | 
| 1402 |  | 
| 1403 |   template<typename _IntType, | 
| 1404 | 	   typename _CharT, typename _Traits> | 
| 1405 |     std::basic_ostream<_CharT, _Traits>& | 
| 1406 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1407 | 	       const poisson_distribution<_IntType>& __x) | 
| 1408 |     { | 
| 1409 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1410 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1411 |  | 
| 1412 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1413 |       const _CharT __fill = __os.fill(); | 
| 1414 |       const std::streamsize __precision = __os.precision(); | 
| 1415 |       const _CharT __space = __os.widen(' '); | 
| 1416 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1417 |       __os.fill(__space); | 
| 1418 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1419 |  | 
| 1420 |       __os << __x.mean() << __space << __x._M_nd; | 
| 1421 |  | 
| 1422 |       __os.flags(__flags); | 
| 1423 |       __os.fill(__fill); | 
| 1424 |       __os.precision(__precision); | 
| 1425 |       return __os; | 
| 1426 |     } | 
| 1427 |  | 
| 1428 |   template<typename _IntType, | 
| 1429 | 	   typename _CharT, typename _Traits> | 
| 1430 |     std::basic_istream<_CharT, _Traits>& | 
| 1431 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1432 | 	       poisson_distribution<_IntType>& __x) | 
| 1433 |     { | 
| 1434 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 1435 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 1436 |  | 
| 1437 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1438 |       __is.flags(__ios_base::skipws); | 
| 1439 |  | 
| 1440 |       double __mean; | 
| 1441 |       if (__is >> __mean >> __x._M_nd) | 
| 1442 | 	__x.param(typename poisson_distribution<_IntType>::param_type(__mean)); | 
| 1443 |  | 
| 1444 |       __is.flags(__flags); | 
| 1445 |       return __is; | 
| 1446 |     } | 
| 1447 |  | 
| 1448 |  | 
| 1449 |   template<typename _IntType> | 
| 1450 |     void | 
| 1451 |     binomial_distribution<_IntType>::param_type:: | 
| 1452 |     _M_initialize() | 
| 1453 |     { | 
| 1454 |       const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; | 
| 1455 |  | 
| 1456 |       _M_easy = true; | 
| 1457 |  | 
| 1458 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1459 |       if (_M_t * __p12 >= 8) | 
| 1460 | 	{ | 
| 1461 | 	  _M_easy = false; | 
| 1462 | 	  const double __np = std::floor(_M_t * __p12); | 
| 1463 | 	  const double __pa = __np / _M_t; | 
| 1464 | 	  const double __1p = 1 - __pa; | 
| 1465 |  | 
| 1466 | 	  const double __pi_4 = 0.7853981633974483096156608458198757L; | 
| 1467 | 	  const double __d1x = | 
| 1468 | 	    std::sqrt(__np * __1p * std::log(32 * __np | 
| 1469 | 					     / (81 * __pi_4 * __1p))); | 
| 1470 | 	  _M_d1 = std::round(std::max<double>(1.0, __d1x)); | 
| 1471 | 	  const double __d2x = | 
| 1472 | 	    std::sqrt(__np * __1p * std::log(32 * _M_t * __1p | 
| 1473 | 					     / (__pi_4 * __pa))); | 
| 1474 | 	  _M_d2 = std::round(std::max<double>(1.0, __d2x)); | 
| 1475 |  | 
| 1476 | 	  // sqrt(pi / 2) | 
| 1477 | 	  const double __spi_2 = 1.2533141373155002512078826424055226L; | 
| 1478 | 	  _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np)); | 
| 1479 | 	  _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); | 
| 1480 | 	  _M_c = 2 * _M_d1 / __np; | 
| 1481 | 	  _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2; | 
| 1482 | 	  const double __a12 = _M_a1 + _M_s2 * __spi_2; | 
| 1483 | 	  const double __s1s = _M_s1 * _M_s1; | 
| 1484 | 	  _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) | 
| 1485 | 			     * 2 * __s1s / _M_d1 | 
| 1486 | 			     * std::exp(-_M_d1 * _M_d1 / (2 * __s1s))); | 
| 1487 | 	  const double __s2s = _M_s2 * _M_s2; | 
| 1488 | 	  _M_s = (_M_a123 + 2 * __s2s / _M_d2 | 
| 1489 | 		  * std::exp(-_M_d2 * _M_d2 / (2 * __s2s))); | 
| 1490 | 	  _M_lf = (std::lgamma(__np + 1) | 
| 1491 | 		   + std::lgamma(_M_t - __np + 1)); | 
| 1492 | 	  _M_lp1p = std::log(__pa / __1p); | 
| 1493 |  | 
| 1494 | 	  _M_q = -std::log(1 - (__p12 - __pa) / __1p); | 
| 1495 | 	} | 
| 1496 |       else | 
| 1497 | #endif | 
| 1498 | 	_M_q = -std::log(1 - __p12); | 
| 1499 |     } | 
| 1500 |  | 
| 1501 |   template<typename _IntType> | 
| 1502 |     template<typename _UniformRandomNumberGenerator> | 
| 1503 |       typename binomial_distribution<_IntType>::result_type | 
| 1504 |       binomial_distribution<_IntType>:: | 
| 1505 |       _M_waiting(_UniformRandomNumberGenerator& __urng, | 
| 1506 | 		 _IntType __t, double __q) | 
| 1507 |       { | 
| 1508 | 	_IntType __x = 0; | 
| 1509 | 	double __sum = 0.0; | 
| 1510 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1511 | 	  __aurng(__urng); | 
| 1512 |  | 
| 1513 | 	do | 
| 1514 | 	  { | 
| 1515 | 	    if (__t == __x) | 
| 1516 | 	      return __x; | 
| 1517 | 	    const double __e = -std::log(1.0 - __aurng()); | 
| 1518 | 	    __sum += __e / (__t - __x); | 
| 1519 | 	    __x += 1; | 
| 1520 | 	  } | 
| 1521 | 	while (__sum <= __q); | 
| 1522 |  | 
| 1523 | 	return __x - 1; | 
| 1524 |       } | 
| 1525 |  | 
| 1526 |   /** | 
| 1527 |    * A rejection algorithm when t * p >= 8 and a simple waiting time | 
| 1528 |    * method - the second in the referenced book - otherwise. | 
| 1529 |    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1530 |    * is defined. | 
| 1531 |    * | 
| 1532 |    * Reference: | 
| 1533 |    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
| 1534 |    * New York, 1986, Ch. X, Sect. 4 (+ Errata!). | 
| 1535 |    */ | 
| 1536 |   template<typename _IntType> | 
| 1537 |     template<typename _UniformRandomNumberGenerator> | 
| 1538 |       typename binomial_distribution<_IntType>::result_type | 
| 1539 |       binomial_distribution<_IntType>:: | 
| 1540 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1541 | 		 const param_type& __param) | 
| 1542 |       { | 
| 1543 | 	result_type __ret; | 
| 1544 | 	const _IntType __t = __param.t(); | 
| 1545 | 	const double __p = __param.p(); | 
| 1546 | 	const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; | 
| 1547 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1548 | 	  __aurng(__urng); | 
| 1549 |  | 
| 1550 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1551 | 	if (!__param._M_easy) | 
| 1552 | 	  { | 
| 1553 | 	    double __x; | 
| 1554 |  | 
| 1555 | 	    // See comments above... | 
| 1556 | 	    const double __naf = | 
| 1557 | 	      (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1558 | 	    const double __thr = | 
| 1559 | 	      std::numeric_limits<_IntType>::max() + __naf; | 
| 1560 |  | 
| 1561 | 	    const double __np = std::floor(__t * __p12); | 
| 1562 |  | 
| 1563 | 	    // sqrt(pi / 2) | 
| 1564 | 	    const double __spi_2 = 1.2533141373155002512078826424055226L; | 
| 1565 | 	    const double __a1 = __param._M_a1; | 
| 1566 | 	    const double __a12 = __a1 + __param._M_s2 * __spi_2; | 
| 1567 | 	    const double __a123 = __param._M_a123; | 
| 1568 | 	    const double __s1s = __param._M_s1 * __param._M_s1; | 
| 1569 | 	    const double __s2s = __param._M_s2 * __param._M_s2; | 
| 1570 |  | 
| 1571 | 	    bool __reject; | 
| 1572 | 	    do | 
| 1573 | 	      { | 
| 1574 | 		const double __u = __param._M_s * __aurng(); | 
| 1575 |  | 
| 1576 | 		double __v; | 
| 1577 |  | 
| 1578 | 		if (__u <= __a1) | 
| 1579 | 		  { | 
| 1580 | 		    const double __n = _M_nd(__urng); | 
| 1581 | 		    const double __y = __param._M_s1 * std::abs(__n); | 
| 1582 | 		    __reject = __y >= __param._M_d1; | 
| 1583 | 		    if (!__reject) | 
| 1584 | 		      { | 
| 1585 | 			const double __e = -std::log(1.0 - __aurng()); | 
| 1586 | 			__x = std::floor(__y); | 
| 1587 | 			__v = -__e - __n * __n / 2 + __param._M_c; | 
| 1588 | 		      } | 
| 1589 | 		  } | 
| 1590 | 		else if (__u <= __a12) | 
| 1591 | 		  { | 
| 1592 | 		    const double __n = _M_nd(__urng); | 
| 1593 | 		    const double __y = __param._M_s2 * std::abs(__n); | 
| 1594 | 		    __reject = __y >= __param._M_d2; | 
| 1595 | 		    if (!__reject) | 
| 1596 | 		      { | 
| 1597 | 			const double __e = -std::log(1.0 - __aurng()); | 
| 1598 | 			__x = std::floor(-__y); | 
| 1599 | 			__v = -__e - __n * __n / 2; | 
| 1600 | 		      } | 
| 1601 | 		  } | 
| 1602 | 		else if (__u <= __a123) | 
| 1603 | 		  { | 
| 1604 | 		    const double __e1 = -std::log(1.0 - __aurng()); | 
| 1605 | 		    const double __e2 = -std::log(1.0 - __aurng()); | 
| 1606 |  | 
| 1607 | 		    const double __y = __param._M_d1 | 
| 1608 | 				     + 2 * __s1s * __e1 / __param._M_d1; | 
| 1609 | 		    __x = std::floor(__y); | 
| 1610 | 		    __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) | 
| 1611 | 						    -__y / (2 * __s1s))); | 
| 1612 | 		    __reject = false; | 
| 1613 | 		  } | 
| 1614 | 		else | 
| 1615 | 		  { | 
| 1616 | 		    const double __e1 = -std::log(1.0 - __aurng()); | 
| 1617 | 		    const double __e2 = -std::log(1.0 - __aurng()); | 
| 1618 |  | 
| 1619 | 		    const double __y = __param._M_d2 | 
| 1620 | 				     + 2 * __s2s * __e1 / __param._M_d2; | 
| 1621 | 		    __x = std::floor(-__y); | 
| 1622 | 		    __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); | 
| 1623 | 		    __reject = false; | 
| 1624 | 		  } | 
| 1625 |  | 
| 1626 | 		__reject = __reject || __x < -__np || __x > __t - __np; | 
| 1627 | 		if (!__reject) | 
| 1628 | 		  { | 
| 1629 | 		    const double __lfx = | 
| 1630 | 		      std::lgamma(__np + __x + 1) | 
| 1631 | 		      + std::lgamma(__t - (__np + __x) + 1); | 
| 1632 | 		    __reject = __v > __param._M_lf - __lfx | 
| 1633 | 			     + __x * __param._M_lp1p; | 
| 1634 | 		  } | 
| 1635 |  | 
| 1636 | 		__reject |= __x + __np >= __thr; | 
| 1637 | 	      } | 
| 1638 | 	    while (__reject); | 
| 1639 |  | 
| 1640 | 	    __x += __np + __naf; | 
| 1641 |  | 
| 1642 | 	    const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), | 
| 1643 | 					    __param._M_q); | 
| 1644 | 	    __ret = _IntType(__x) + __z; | 
| 1645 | 	  } | 
| 1646 | 	else | 
| 1647 | #endif | 
| 1648 | 	  __ret = _M_waiting(__urng, __t, __param._M_q); | 
| 1649 |  | 
| 1650 | 	if (__p12 != __p) | 
| 1651 | 	  __ret = __t - __ret; | 
| 1652 | 	return __ret; | 
| 1653 |       } | 
| 1654 |  | 
| 1655 |   template<typename _IntType> | 
| 1656 |     template<typename _ForwardIterator, | 
| 1657 | 	     typename _UniformRandomNumberGenerator> | 
| 1658 |       void | 
| 1659 |       binomial_distribution<_IntType>:: | 
| 1660 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1661 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1662 | 		      const param_type& __param) | 
| 1663 |       { | 
| 1664 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1665 | 	// We could duplicate everything from operator()... | 
| 1666 | 	while (__f != __t) | 
| 1667 | 	  *__f++ = this->operator()(__urng, __param); | 
| 1668 |       } | 
| 1669 |  | 
| 1670 |   template<typename _IntType, | 
| 1671 | 	   typename _CharT, typename _Traits> | 
| 1672 |     std::basic_ostream<_CharT, _Traits>& | 
| 1673 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1674 | 	       const binomial_distribution<_IntType>& __x) | 
| 1675 |     { | 
| 1676 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1677 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1678 |  | 
| 1679 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1680 |       const _CharT __fill = __os.fill(); | 
| 1681 |       const std::streamsize __precision = __os.precision(); | 
| 1682 |       const _CharT __space = __os.widen(' '); | 
| 1683 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1684 |       __os.fill(__space); | 
| 1685 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1686 |  | 
| 1687 |       __os << __x.t() << __space << __x.p() | 
| 1688 | 	   << __space << __x._M_nd; | 
| 1689 |  | 
| 1690 |       __os.flags(__flags); | 
| 1691 |       __os.fill(__fill); | 
| 1692 |       __os.precision(__precision); | 
| 1693 |       return __os; | 
| 1694 |     } | 
| 1695 |  | 
| 1696 |   template<typename _IntType, | 
| 1697 | 	   typename _CharT, typename _Traits> | 
| 1698 |     std::basic_istream<_CharT, _Traits>& | 
| 1699 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1700 | 	       binomial_distribution<_IntType>& __x) | 
| 1701 |     { | 
| 1702 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 1703 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 1704 |  | 
| 1705 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1706 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 1707 |  | 
| 1708 |       _IntType __t; | 
| 1709 |       double __p; | 
| 1710 |       if (__is >> __t >> __p >> __x._M_nd) | 
| 1711 | 	__x.param(typename binomial_distribution<_IntType>:: | 
| 1712 | 		  param_type(__t, __p)); | 
| 1713 |  | 
| 1714 |       __is.flags(__flags); | 
| 1715 |       return __is; | 
| 1716 |     } | 
| 1717 |  | 
| 1718 |  | 
| 1719 |   template<typename _RealType> | 
| 1720 |     template<typename _ForwardIterator, | 
| 1721 | 	     typename _UniformRandomNumberGenerator> | 
| 1722 |       void | 
| 1723 |       std::exponential_distribution<_RealType>:: | 
| 1724 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1725 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1726 | 		      const param_type& __p) | 
| 1727 |       { | 
| 1728 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1729 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 1730 | 	  __aurng(__urng); | 
| 1731 | 	while (__f != __t) | 
| 1732 | 	  *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); | 
| 1733 |       } | 
| 1734 |  | 
| 1735 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1736 |     std::basic_ostream<_CharT, _Traits>& | 
| 1737 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1738 | 	       const exponential_distribution<_RealType>& __x) | 
| 1739 |     { | 
| 1740 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1741 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1742 |  | 
| 1743 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1744 |       const _CharT __fill = __os.fill(); | 
| 1745 |       const std::streamsize __precision = __os.precision(); | 
| 1746 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1747 |       __os.fill(__os.widen(' ')); | 
| 1748 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 1749 |  | 
| 1750 |       __os << __x.lambda(); | 
| 1751 |  | 
| 1752 |       __os.flags(__flags); | 
| 1753 |       __os.fill(__fill); | 
| 1754 |       __os.precision(__precision); | 
| 1755 |       return __os; | 
| 1756 |     } | 
| 1757 |  | 
| 1758 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1759 |     std::basic_istream<_CharT, _Traits>& | 
| 1760 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1761 | 	       exponential_distribution<_RealType>& __x) | 
| 1762 |     { | 
| 1763 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 1764 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 1765 |  | 
| 1766 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1767 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 1768 |  | 
| 1769 |       _RealType __lambda; | 
| 1770 |       if (__is >> __lambda) | 
| 1771 | 	__x.param(typename exponential_distribution<_RealType>:: | 
| 1772 | 		  param_type(__lambda)); | 
| 1773 |  | 
| 1774 |       __is.flags(__flags); | 
| 1775 |       return __is; | 
| 1776 |     } | 
| 1777 |  | 
| 1778 |  | 
| 1779 |   /** | 
| 1780 |    * Polar method due to Marsaglia. | 
| 1781 |    * | 
| 1782 |    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
| 1783 |    * New York, 1986, Ch. V, Sect. 4.4. | 
| 1784 |    */ | 
| 1785 |   template<typename _RealType> | 
| 1786 |     template<typename _UniformRandomNumberGenerator> | 
| 1787 |       typename normal_distribution<_RealType>::result_type | 
| 1788 |       normal_distribution<_RealType>:: | 
| 1789 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1790 | 		 const param_type& __param) | 
| 1791 |       { | 
| 1792 | 	result_type __ret; | 
| 1793 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 1794 | 	  __aurng(__urng); | 
| 1795 |  | 
| 1796 | 	if (_M_saved_available) | 
| 1797 | 	  { | 
| 1798 | 	    _M_saved_available = false; | 
| 1799 | 	    __ret = _M_saved; | 
| 1800 | 	  } | 
| 1801 | 	else | 
| 1802 | 	  { | 
| 1803 | 	    result_type __x, __y, __r2; | 
| 1804 | 	    do | 
| 1805 | 	      { | 
| 1806 | 		__x = result_type(2.0) * __aurng() - 1.0; | 
| 1807 | 		__y = result_type(2.0) * __aurng() - 1.0; | 
| 1808 | 		__r2 = __x * __x + __y * __y; | 
| 1809 | 	      } | 
| 1810 | 	    while (__r2 > 1.0 || __r2 == 0.0); | 
| 1811 |  | 
| 1812 | 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); | 
| 1813 | 	    _M_saved = __x * __mult; | 
| 1814 | 	    _M_saved_available = true; | 
| 1815 | 	    __ret = __y * __mult; | 
| 1816 | 	  } | 
| 1817 |  | 
| 1818 | 	__ret = __ret * __param.stddev() + __param.mean(); | 
| 1819 | 	return __ret; | 
| 1820 |       } | 
| 1821 |  | 
| 1822 |   template<typename _RealType> | 
| 1823 |     template<typename _ForwardIterator, | 
| 1824 | 	     typename _UniformRandomNumberGenerator> | 
| 1825 |       void | 
| 1826 |       normal_distribution<_RealType>:: | 
| 1827 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1828 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1829 | 		      const param_type& __param) | 
| 1830 |       { | 
| 1831 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1832 |  | 
| 1833 | 	if (__f == __t) | 
| 1834 | 	  return; | 
| 1835 |  | 
| 1836 | 	if (_M_saved_available) | 
| 1837 | 	  { | 
| 1838 | 	    _M_saved_available = false; | 
| 1839 | 	    *__f++ = _M_saved * __param.stddev() + __param.mean(); | 
| 1840 |  | 
| 1841 | 	    if (__f == __t) | 
| 1842 | 	      return; | 
| 1843 | 	  } | 
| 1844 |  | 
| 1845 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 1846 | 	  __aurng(__urng); | 
| 1847 |  | 
| 1848 | 	while (__f + 1 < __t) | 
| 1849 | 	  { | 
| 1850 | 	    result_type __x, __y, __r2; | 
| 1851 | 	    do | 
| 1852 | 	      { | 
| 1853 | 		__x = result_type(2.0) * __aurng() - 1.0; | 
| 1854 | 		__y = result_type(2.0) * __aurng() - 1.0; | 
| 1855 | 		__r2 = __x * __x + __y * __y; | 
| 1856 | 	      } | 
| 1857 | 	    while (__r2 > 1.0 || __r2 == 0.0); | 
| 1858 |  | 
| 1859 | 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); | 
| 1860 | 	    *__f++ = __y * __mult * __param.stddev() + __param.mean(); | 
| 1861 | 	    *__f++ = __x * __mult * __param.stddev() + __param.mean(); | 
| 1862 | 	  } | 
| 1863 |  | 
| 1864 | 	if (__f != __t) | 
| 1865 | 	  { | 
| 1866 | 	    result_type __x, __y, __r2; | 
| 1867 | 	    do | 
| 1868 | 	      { | 
| 1869 | 		__x = result_type(2.0) * __aurng() - 1.0; | 
| 1870 | 		__y = result_type(2.0) * __aurng() - 1.0; | 
| 1871 | 		__r2 = __x * __x + __y * __y; | 
| 1872 | 	      } | 
| 1873 | 	    while (__r2 > 1.0 || __r2 == 0.0); | 
| 1874 |  | 
| 1875 | 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); | 
| 1876 | 	    _M_saved = __x * __mult; | 
| 1877 | 	    _M_saved_available = true; | 
| 1878 | 	    *__f = __y * __mult * __param.stddev() + __param.mean(); | 
| 1879 | 	  } | 
| 1880 |       } | 
| 1881 |  | 
| 1882 |   template<typename _RealType> | 
| 1883 |     bool | 
| 1884 |     operator==(const std::normal_distribution<_RealType>& __d1, | 
| 1885 | 	       const std::normal_distribution<_RealType>& __d2) | 
| 1886 |     { | 
| 1887 |       if (__d1._M_param == __d2._M_param | 
| 1888 | 	  && __d1._M_saved_available == __d2._M_saved_available) | 
| 1889 | 	{ | 
| 1890 | 	  if (__d1._M_saved_available | 
| 1891 | 	      && __d1._M_saved == __d2._M_saved) | 
| 1892 | 	    return true; | 
| 1893 | 	  else if(!__d1._M_saved_available) | 
| 1894 | 	    return true; | 
| 1895 | 	  else | 
| 1896 | 	    return false; | 
| 1897 | 	} | 
| 1898 |       else | 
| 1899 | 	return false; | 
| 1900 |     } | 
| 1901 |  | 
| 1902 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1903 |     std::basic_ostream<_CharT, _Traits>& | 
| 1904 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1905 | 	       const normal_distribution<_RealType>& __x) | 
| 1906 |     { | 
| 1907 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1908 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1909 |  | 
| 1910 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1911 |       const _CharT __fill = __os.fill(); | 
| 1912 |       const std::streamsize __precision = __os.precision(); | 
| 1913 |       const _CharT __space = __os.widen(' '); | 
| 1914 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1915 |       __os.fill(__space); | 
| 1916 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 1917 |  | 
| 1918 |       __os << __x.mean() << __space << __x.stddev() | 
| 1919 | 	   << __space << __x._M_saved_available; | 
| 1920 |       if (__x._M_saved_available) | 
| 1921 | 	__os << __space << __x._M_saved; | 
| 1922 |  | 
| 1923 |       __os.flags(__flags); | 
| 1924 |       __os.fill(__fill); | 
| 1925 |       __os.precision(__precision); | 
| 1926 |       return __os; | 
| 1927 |     } | 
| 1928 |  | 
| 1929 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1930 |     std::basic_istream<_CharT, _Traits>& | 
| 1931 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1932 | 	       normal_distribution<_RealType>& __x) | 
| 1933 |     { | 
| 1934 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 1935 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 1936 |  | 
| 1937 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1938 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 1939 |  | 
| 1940 |       double __mean, __stddev; | 
| 1941 |       bool __saved_avail; | 
| 1942 |       if (__is >> __mean >> __stddev >> __saved_avail) | 
| 1943 | 	{ | 
| 1944 | 	  if (__saved_avail && (__is >> __x._M_saved)) | 
| 1945 | 	    { | 
| 1946 | 	      __x._M_saved_available = __saved_avail; | 
| 1947 | 	      __x.param(typename normal_distribution<_RealType>:: | 
| 1948 | 			param_type(__mean, __stddev)); | 
| 1949 | 	    } | 
| 1950 | 	} | 
| 1951 |  | 
| 1952 |       __is.flags(__flags); | 
| 1953 |       return __is; | 
| 1954 |     } | 
| 1955 |  | 
| 1956 |  | 
| 1957 |   template<typename _RealType> | 
| 1958 |     template<typename _ForwardIterator, | 
| 1959 | 	     typename _UniformRandomNumberGenerator> | 
| 1960 |       void | 
| 1961 |       lognormal_distribution<_RealType>:: | 
| 1962 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1963 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1964 | 		      const param_type& __p) | 
| 1965 |       { | 
| 1966 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1967 | 	  while (__f != __t) | 
| 1968 | 	    *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); | 
| 1969 |       } | 
| 1970 |  | 
| 1971 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1972 |     std::basic_ostream<_CharT, _Traits>& | 
| 1973 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1974 | 	       const lognormal_distribution<_RealType>& __x) | 
| 1975 |     { | 
| 1976 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 1977 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 1978 |  | 
| 1979 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1980 |       const _CharT __fill = __os.fill(); | 
| 1981 |       const std::streamsize __precision = __os.precision(); | 
| 1982 |       const _CharT __space = __os.widen(' '); | 
| 1983 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1984 |       __os.fill(__space); | 
| 1985 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 1986 |  | 
| 1987 |       __os << __x.m() << __space << __x.s() | 
| 1988 | 	   << __space << __x._M_nd; | 
| 1989 |  | 
| 1990 |       __os.flags(__flags); | 
| 1991 |       __os.fill(__fill); | 
| 1992 |       __os.precision(__precision); | 
| 1993 |       return __os; | 
| 1994 |     } | 
| 1995 |  | 
| 1996 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1997 |     std::basic_istream<_CharT, _Traits>& | 
| 1998 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1999 | 	       lognormal_distribution<_RealType>& __x) | 
| 2000 |     { | 
| 2001 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2002 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2003 |  | 
| 2004 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2005 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2006 |  | 
| 2007 |       _RealType __m, __s; | 
| 2008 |       if (__is >> __m >> __s >> __x._M_nd) | 
| 2009 | 	__x.param(typename lognormal_distribution<_RealType>:: | 
| 2010 | 		  param_type(__m, __s)); | 
| 2011 |  | 
| 2012 |       __is.flags(__flags); | 
| 2013 |       return __is; | 
| 2014 |     } | 
| 2015 |  | 
| 2016 |   template<typename _RealType> | 
| 2017 |     template<typename _ForwardIterator, | 
| 2018 | 	     typename _UniformRandomNumberGenerator> | 
| 2019 |       void | 
| 2020 |       std::chi_squared_distribution<_RealType>:: | 
| 2021 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2022 | 		      _UniformRandomNumberGenerator& __urng) | 
| 2023 |       { | 
| 2024 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2025 | 	while (__f != __t) | 
| 2026 | 	  *__f++ = 2 * _M_gd(__urng); | 
| 2027 |       } | 
| 2028 |  | 
| 2029 |   template<typename _RealType> | 
| 2030 |     template<typename _ForwardIterator, | 
| 2031 | 	     typename _UniformRandomNumberGenerator> | 
| 2032 |       void | 
| 2033 |       std::chi_squared_distribution<_RealType>:: | 
| 2034 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2035 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2036 | 		      const typename | 
| 2037 | 		      std::gamma_distribution<result_type>::param_type& __p) | 
| 2038 |       { | 
| 2039 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2040 | 	while (__f != __t) | 
| 2041 | 	  *__f++ = 2 * _M_gd(__urng, __p); | 
| 2042 |       } | 
| 2043 |  | 
| 2044 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2045 |     std::basic_ostream<_CharT, _Traits>& | 
| 2046 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2047 | 	       const chi_squared_distribution<_RealType>& __x) | 
| 2048 |     { | 
| 2049 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2050 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2051 |  | 
| 2052 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2053 |       const _CharT __fill = __os.fill(); | 
| 2054 |       const std::streamsize __precision = __os.precision(); | 
| 2055 |       const _CharT __space = __os.widen(' '); | 
| 2056 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2057 |       __os.fill(__space); | 
| 2058 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2059 |  | 
| 2060 |       __os << __x.n() << __space << __x._M_gd; | 
| 2061 |  | 
| 2062 |       __os.flags(__flags); | 
| 2063 |       __os.fill(__fill); | 
| 2064 |       __os.precision(__precision); | 
| 2065 |       return __os; | 
| 2066 |     } | 
| 2067 |  | 
| 2068 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2069 |     std::basic_istream<_CharT, _Traits>& | 
| 2070 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2071 | 	       chi_squared_distribution<_RealType>& __x) | 
| 2072 |     { | 
| 2073 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2074 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2075 |  | 
| 2076 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2077 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2078 |  | 
| 2079 |       _RealType __n; | 
| 2080 |       if (__is >> __n >> __x._M_gd) | 
| 2081 | 	__x.param(typename chi_squared_distribution<_RealType>:: | 
| 2082 | 		  param_type(__n)); | 
| 2083 |  | 
| 2084 |       __is.flags(__flags); | 
| 2085 |       return __is; | 
| 2086 |     } | 
| 2087 |  | 
| 2088 |  | 
| 2089 |   template<typename _RealType> | 
| 2090 |     template<typename _UniformRandomNumberGenerator> | 
| 2091 |       typename cauchy_distribution<_RealType>::result_type | 
| 2092 |       cauchy_distribution<_RealType>:: | 
| 2093 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2094 | 		 const param_type& __p) | 
| 2095 |       { | 
| 2096 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2097 | 	  __aurng(__urng); | 
| 2098 | 	_RealType __u; | 
| 2099 | 	do | 
| 2100 | 	  __u = __aurng(); | 
| 2101 | 	while (__u == 0.5); | 
| 2102 |  | 
| 2103 | 	const _RealType __pi = 3.1415926535897932384626433832795029L; | 
| 2104 | 	return __p.a() + __p.b() * std::tan(__pi * __u); | 
| 2105 |       } | 
| 2106 |  | 
| 2107 |   template<typename _RealType> | 
| 2108 |     template<typename _ForwardIterator, | 
| 2109 | 	     typename _UniformRandomNumberGenerator> | 
| 2110 |       void | 
| 2111 |       cauchy_distribution<_RealType>:: | 
| 2112 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2113 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2114 | 		      const param_type& __p) | 
| 2115 |       { | 
| 2116 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2117 | 	const _RealType __pi = 3.1415926535897932384626433832795029L; | 
| 2118 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2119 | 	  __aurng(__urng); | 
| 2120 | 	while (__f != __t) | 
| 2121 | 	  { | 
| 2122 | 	    _RealType __u; | 
| 2123 | 	    do | 
| 2124 | 	      __u = __aurng(); | 
| 2125 | 	    while (__u == 0.5); | 
| 2126 |  | 
| 2127 | 	    *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); | 
| 2128 | 	  } | 
| 2129 |       } | 
| 2130 |  | 
| 2131 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2132 |     std::basic_ostream<_CharT, _Traits>& | 
| 2133 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2134 | 	       const cauchy_distribution<_RealType>& __x) | 
| 2135 |     { | 
| 2136 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2137 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2138 |  | 
| 2139 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2140 |       const _CharT __fill = __os.fill(); | 
| 2141 |       const std::streamsize __precision = __os.precision(); | 
| 2142 |       const _CharT __space = __os.widen(' '); | 
| 2143 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2144 |       __os.fill(__space); | 
| 2145 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2146 |  | 
| 2147 |       __os << __x.a() << __space << __x.b(); | 
| 2148 |  | 
| 2149 |       __os.flags(__flags); | 
| 2150 |       __os.fill(__fill); | 
| 2151 |       __os.precision(__precision); | 
| 2152 |       return __os; | 
| 2153 |     } | 
| 2154 |  | 
| 2155 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2156 |     std::basic_istream<_CharT, _Traits>& | 
| 2157 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2158 | 	       cauchy_distribution<_RealType>& __x) | 
| 2159 |     { | 
| 2160 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2161 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2162 |  | 
| 2163 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2164 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2165 |  | 
| 2166 |       _RealType __a, __b; | 
| 2167 |       if (__is >> __a >> __b) | 
| 2168 | 	__x.param(typename cauchy_distribution<_RealType>:: | 
| 2169 | 		  param_type(__a, __b)); | 
| 2170 |  | 
| 2171 |       __is.flags(__flags); | 
| 2172 |       return __is; | 
| 2173 |     } | 
| 2174 |  | 
| 2175 |  | 
| 2176 |   template<typename _RealType> | 
| 2177 |     template<typename _ForwardIterator, | 
| 2178 | 	     typename _UniformRandomNumberGenerator> | 
| 2179 |       void | 
| 2180 |       std::fisher_f_distribution<_RealType>:: | 
| 2181 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2182 | 		      _UniformRandomNumberGenerator& __urng) | 
| 2183 |       { | 
| 2184 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2185 | 	while (__f != __t) | 
| 2186 | 	  *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); | 
| 2187 |       } | 
| 2188 |  | 
| 2189 |   template<typename _RealType> | 
| 2190 |     template<typename _ForwardIterator, | 
| 2191 | 	     typename _UniformRandomNumberGenerator> | 
| 2192 |       void | 
| 2193 |       std::fisher_f_distribution<_RealType>:: | 
| 2194 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2195 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2196 | 		      const param_type& __p) | 
| 2197 |       { | 
| 2198 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2199 | 	typedef typename std::gamma_distribution<result_type>::param_type | 
| 2200 | 	  param_type; | 
| 2201 | 	param_type __p1(__p.m() / 2); | 
| 2202 | 	param_type __p2(__p.n() / 2); | 
| 2203 | 	while (__f != __t) | 
| 2204 | 	  *__f++ = ((_M_gd_x(__urng, __p1) * n()) | 
| 2205 | 		    / (_M_gd_y(__urng, __p2) * m())); | 
| 2206 |       } | 
| 2207 |  | 
| 2208 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2209 |     std::basic_ostream<_CharT, _Traits>& | 
| 2210 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2211 | 	       const fisher_f_distribution<_RealType>& __x) | 
| 2212 |     { | 
| 2213 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2214 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2215 |  | 
| 2216 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2217 |       const _CharT __fill = __os.fill(); | 
| 2218 |       const std::streamsize __precision = __os.precision(); | 
| 2219 |       const _CharT __space = __os.widen(' '); | 
| 2220 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2221 |       __os.fill(__space); | 
| 2222 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2223 |  | 
| 2224 |       __os << __x.m() << __space << __x.n() | 
| 2225 | 	   << __space << __x._M_gd_x << __space << __x._M_gd_y; | 
| 2226 |  | 
| 2227 |       __os.flags(__flags); | 
| 2228 |       __os.fill(__fill); | 
| 2229 |       __os.precision(__precision); | 
| 2230 |       return __os; | 
| 2231 |     } | 
| 2232 |  | 
| 2233 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2234 |     std::basic_istream<_CharT, _Traits>& | 
| 2235 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2236 | 	       fisher_f_distribution<_RealType>& __x) | 
| 2237 |     { | 
| 2238 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2239 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2240 |  | 
| 2241 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2242 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2243 |  | 
| 2244 |       _RealType __m, __n; | 
| 2245 |       if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) | 
| 2246 | 	__x.param(typename fisher_f_distribution<_RealType>:: | 
| 2247 | 		  param_type(__m, __n)); | 
| 2248 |  | 
| 2249 |       __is.flags(__flags); | 
| 2250 |       return __is; | 
| 2251 |     } | 
| 2252 |  | 
| 2253 |  | 
| 2254 |   template<typename _RealType> | 
| 2255 |     template<typename _ForwardIterator, | 
| 2256 | 	     typename _UniformRandomNumberGenerator> | 
| 2257 |       void | 
| 2258 |       std::student_t_distribution<_RealType>:: | 
| 2259 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2260 | 		      _UniformRandomNumberGenerator& __urng) | 
| 2261 |       { | 
| 2262 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2263 | 	while (__f != __t) | 
| 2264 | 	  *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); | 
| 2265 |       } | 
| 2266 |  | 
| 2267 |   template<typename _RealType> | 
| 2268 |     template<typename _ForwardIterator, | 
| 2269 | 	     typename _UniformRandomNumberGenerator> | 
| 2270 |       void | 
| 2271 |       std::student_t_distribution<_RealType>:: | 
| 2272 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2273 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2274 | 		      const param_type& __p) | 
| 2275 |       { | 
| 2276 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2277 | 	typename std::gamma_distribution<result_type>::param_type | 
| 2278 | 	  __p2(__p.n() / 2, 2); | 
| 2279 | 	while (__f != __t) | 
| 2280 | 	  *__f++ =  _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); | 
| 2281 |       } | 
| 2282 |  | 
| 2283 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2284 |     std::basic_ostream<_CharT, _Traits>& | 
| 2285 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2286 | 	       const student_t_distribution<_RealType>& __x) | 
| 2287 |     { | 
| 2288 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2289 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2290 |  | 
| 2291 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2292 |       const _CharT __fill = __os.fill(); | 
| 2293 |       const std::streamsize __precision = __os.precision(); | 
| 2294 |       const _CharT __space = __os.widen(' '); | 
| 2295 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2296 |       __os.fill(__space); | 
| 2297 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2298 |  | 
| 2299 |       __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; | 
| 2300 |  | 
| 2301 |       __os.flags(__flags); | 
| 2302 |       __os.fill(__fill); | 
| 2303 |       __os.precision(__precision); | 
| 2304 |       return __os; | 
| 2305 |     } | 
| 2306 |  | 
| 2307 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2308 |     std::basic_istream<_CharT, _Traits>& | 
| 2309 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2310 | 	       student_t_distribution<_RealType>& __x) | 
| 2311 |     { | 
| 2312 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2313 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2314 |  | 
| 2315 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2316 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2317 |  | 
| 2318 |       _RealType __n; | 
| 2319 |       if (__is >> __n >> __x._M_nd >> __x._M_gd) | 
| 2320 | 	__x.param(typename student_t_distribution<_RealType>::param_type(__n)); | 
| 2321 |  | 
| 2322 |       __is.flags(__flags); | 
| 2323 |       return __is; | 
| 2324 |     } | 
| 2325 |  | 
| 2326 |  | 
| 2327 |   template<typename _RealType> | 
| 2328 |     void | 
| 2329 |     gamma_distribution<_RealType>::param_type:: | 
| 2330 |     _M_initialize() | 
| 2331 |     { | 
| 2332 |       _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; | 
| 2333 |  | 
| 2334 |       const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); | 
| 2335 |       _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); | 
| 2336 |     } | 
| 2337 |  | 
| 2338 |   /** | 
| 2339 |    * Marsaglia, G. and Tsang, W. W. | 
| 2340 |    * "A Simple Method for Generating Gamma Variables" | 
| 2341 |    * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. | 
| 2342 |    */ | 
| 2343 |   template<typename _RealType> | 
| 2344 |     template<typename _UniformRandomNumberGenerator> | 
| 2345 |       typename gamma_distribution<_RealType>::result_type | 
| 2346 |       gamma_distribution<_RealType>:: | 
| 2347 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2348 | 		 const param_type& __param) | 
| 2349 |       { | 
| 2350 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2351 | 	  __aurng(__urng); | 
| 2352 |  | 
| 2353 | 	result_type __u, __v, __n; | 
| 2354 | 	const result_type __a1 = (__param._M_malpha | 
| 2355 | 				  - _RealType(1.0) / _RealType(3.0)); | 
| 2356 |  | 
| 2357 | 	do | 
| 2358 | 	  { | 
| 2359 | 	    do | 
| 2360 | 	      { | 
| 2361 | 		__n = _M_nd(__urng); | 
| 2362 | 		__v = result_type(1.0) + __param._M_a2 * __n;  | 
| 2363 | 	      } | 
| 2364 | 	    while (__v <= 0.0); | 
| 2365 |  | 
| 2366 | 	    __v = __v * __v * __v; | 
| 2367 | 	    __u = __aurng(); | 
| 2368 | 	  } | 
| 2369 | 	while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n | 
| 2370 | 	       && (std::log(__u) > (0.5 * __n * __n + __a1 | 
| 2371 | 				    * (1.0 - __v + std::log(__v))))); | 
| 2372 |  | 
| 2373 | 	if (__param.alpha() == __param._M_malpha) | 
| 2374 | 	  return __a1 * __v * __param.beta(); | 
| 2375 | 	else | 
| 2376 | 	  { | 
| 2377 | 	    do | 
| 2378 | 	      __u = __aurng(); | 
| 2379 | 	    while (__u == 0.0); | 
| 2380 | 	     | 
| 2381 | 	    return (std::pow(__u, result_type(1.0) / __param.alpha()) | 
| 2382 | 		    * __a1 * __v * __param.beta()); | 
| 2383 | 	  } | 
| 2384 |       } | 
| 2385 |  | 
| 2386 |   template<typename _RealType> | 
| 2387 |     template<typename _ForwardIterator, | 
| 2388 | 	     typename _UniformRandomNumberGenerator> | 
| 2389 |       void | 
| 2390 |       gamma_distribution<_RealType>:: | 
| 2391 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2392 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2393 | 		      const param_type& __param) | 
| 2394 |       { | 
| 2395 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2396 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2397 | 	  __aurng(__urng); | 
| 2398 |  | 
| 2399 | 	result_type __u, __v, __n; | 
| 2400 | 	const result_type __a1 = (__param._M_malpha | 
| 2401 | 				  - _RealType(1.0) / _RealType(3.0)); | 
| 2402 |  | 
| 2403 | 	if (__param.alpha() == __param._M_malpha) | 
| 2404 | 	  while (__f != __t) | 
| 2405 | 	    { | 
| 2406 | 	      do | 
| 2407 | 		{ | 
| 2408 | 		  do | 
| 2409 | 		    { | 
| 2410 | 		      __n = _M_nd(__urng); | 
| 2411 | 		      __v = result_type(1.0) + __param._M_a2 * __n; | 
| 2412 | 		    } | 
| 2413 | 		  while (__v <= 0.0); | 
| 2414 |  | 
| 2415 | 		  __v = __v * __v * __v; | 
| 2416 | 		  __u = __aurng(); | 
| 2417 | 		} | 
| 2418 | 	      while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n | 
| 2419 | 		     && (std::log(__u) > (0.5 * __n * __n + __a1 | 
| 2420 | 					  * (1.0 - __v + std::log(__v))))); | 
| 2421 |  | 
| 2422 | 	      *__f++ = __a1 * __v * __param.beta(); | 
| 2423 | 	    } | 
| 2424 | 	else | 
| 2425 | 	  while (__f != __t) | 
| 2426 | 	    { | 
| 2427 | 	      do | 
| 2428 | 		{ | 
| 2429 | 		  do | 
| 2430 | 		    { | 
| 2431 | 		      __n = _M_nd(__urng); | 
| 2432 | 		      __v = result_type(1.0) + __param._M_a2 * __n; | 
| 2433 | 		    } | 
| 2434 | 		  while (__v <= 0.0); | 
| 2435 |  | 
| 2436 | 		  __v = __v * __v * __v; | 
| 2437 | 		  __u = __aurng(); | 
| 2438 | 		} | 
| 2439 | 	      while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n | 
| 2440 | 		     && (std::log(__u) > (0.5 * __n * __n + __a1 | 
| 2441 | 					  * (1.0 - __v + std::log(__v))))); | 
| 2442 |  | 
| 2443 | 	      do | 
| 2444 | 		__u = __aurng(); | 
| 2445 | 	      while (__u == 0.0); | 
| 2446 |  | 
| 2447 | 	      *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) | 
| 2448 | 			* __a1 * __v * __param.beta()); | 
| 2449 | 	    } | 
| 2450 |       } | 
| 2451 |  | 
| 2452 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2453 |     std::basic_ostream<_CharT, _Traits>& | 
| 2454 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2455 | 	       const gamma_distribution<_RealType>& __x) | 
| 2456 |     { | 
| 2457 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2458 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2459 |  | 
| 2460 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2461 |       const _CharT __fill = __os.fill(); | 
| 2462 |       const std::streamsize __precision = __os.precision(); | 
| 2463 |       const _CharT __space = __os.widen(' '); | 
| 2464 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2465 |       __os.fill(__space); | 
| 2466 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2467 |  | 
| 2468 |       __os << __x.alpha() << __space << __x.beta() | 
| 2469 | 	   << __space << __x._M_nd; | 
| 2470 |  | 
| 2471 |       __os.flags(__flags); | 
| 2472 |       __os.fill(__fill); | 
| 2473 |       __os.precision(__precision); | 
| 2474 |       return __os; | 
| 2475 |     } | 
| 2476 |  | 
| 2477 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2478 |     std::basic_istream<_CharT, _Traits>& | 
| 2479 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2480 | 	       gamma_distribution<_RealType>& __x) | 
| 2481 |     { | 
| 2482 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2483 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2484 |  | 
| 2485 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2486 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2487 |  | 
| 2488 |       _RealType __alpha_val, __beta_val; | 
| 2489 |       if (__is >> __alpha_val >> __beta_val >> __x._M_nd) | 
| 2490 | 	__x.param(typename gamma_distribution<_RealType>:: | 
| 2491 | 		  param_type(__alpha_val, __beta_val)); | 
| 2492 |  | 
| 2493 |       __is.flags(__flags); | 
| 2494 |       return __is; | 
| 2495 |     } | 
| 2496 |  | 
| 2497 |  | 
| 2498 |   template<typename _RealType> | 
| 2499 |     template<typename _UniformRandomNumberGenerator> | 
| 2500 |       typename weibull_distribution<_RealType>::result_type | 
| 2501 |       weibull_distribution<_RealType>:: | 
| 2502 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2503 | 		 const param_type& __p) | 
| 2504 |       { | 
| 2505 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2506 | 	  __aurng(__urng); | 
| 2507 | 	return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), | 
| 2508 | 				  result_type(1) / __p.a()); | 
| 2509 |       } | 
| 2510 |  | 
| 2511 |   template<typename _RealType> | 
| 2512 |     template<typename _ForwardIterator, | 
| 2513 | 	     typename _UniformRandomNumberGenerator> | 
| 2514 |       void | 
| 2515 |       weibull_distribution<_RealType>:: | 
| 2516 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2517 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2518 | 		      const param_type& __p) | 
| 2519 |       { | 
| 2520 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2521 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2522 | 	  __aurng(__urng); | 
| 2523 | 	auto __inv_a = result_type(1) / __p.a(); | 
| 2524 |  | 
| 2525 | 	while (__f != __t) | 
| 2526 | 	  *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), | 
| 2527 | 				      __inv_a); | 
| 2528 |       } | 
| 2529 |  | 
| 2530 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2531 |     std::basic_ostream<_CharT, _Traits>& | 
| 2532 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2533 | 	       const weibull_distribution<_RealType>& __x) | 
| 2534 |     { | 
| 2535 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2536 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2537 |  | 
| 2538 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2539 |       const _CharT __fill = __os.fill(); | 
| 2540 |       const std::streamsize __precision = __os.precision(); | 
| 2541 |       const _CharT __space = __os.widen(' '); | 
| 2542 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2543 |       __os.fill(__space); | 
| 2544 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2545 |  | 
| 2546 |       __os << __x.a() << __space << __x.b(); | 
| 2547 |  | 
| 2548 |       __os.flags(__flags); | 
| 2549 |       __os.fill(__fill); | 
| 2550 |       __os.precision(__precision); | 
| 2551 |       return __os; | 
| 2552 |     } | 
| 2553 |  | 
| 2554 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2555 |     std::basic_istream<_CharT, _Traits>& | 
| 2556 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2557 | 	       weibull_distribution<_RealType>& __x) | 
| 2558 |     { | 
| 2559 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2560 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2561 |  | 
| 2562 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2563 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2564 |  | 
| 2565 |       _RealType __a, __b; | 
| 2566 |       if (__is >> __a >> __b) | 
| 2567 | 	__x.param(typename weibull_distribution<_RealType>:: | 
| 2568 | 		  param_type(__a, __b)); | 
| 2569 |  | 
| 2570 |       __is.flags(__flags); | 
| 2571 |       return __is; | 
| 2572 |     } | 
| 2573 |  | 
| 2574 |  | 
| 2575 |   template<typename _RealType> | 
| 2576 |     template<typename _UniformRandomNumberGenerator> | 
| 2577 |       typename extreme_value_distribution<_RealType>::result_type | 
| 2578 |       extreme_value_distribution<_RealType>:: | 
| 2579 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2580 | 		 const param_type& __p) | 
| 2581 |       { | 
| 2582 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2583 | 	  __aurng(__urng); | 
| 2584 | 	return __p.a() - __p.b() * std::log(-std::log(result_type(1) | 
| 2585 | 						      - __aurng())); | 
| 2586 |       } | 
| 2587 |  | 
| 2588 |   template<typename _RealType> | 
| 2589 |     template<typename _ForwardIterator, | 
| 2590 | 	     typename _UniformRandomNumberGenerator> | 
| 2591 |       void | 
| 2592 |       extreme_value_distribution<_RealType>:: | 
| 2593 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2594 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2595 | 		      const param_type& __p) | 
| 2596 |       { | 
| 2597 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2598 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2599 | 	  __aurng(__urng); | 
| 2600 |  | 
| 2601 | 	while (__f != __t) | 
| 2602 | 	  *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) | 
| 2603 | 							  - __aurng())); | 
| 2604 |       } | 
| 2605 |  | 
| 2606 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2607 |     std::basic_ostream<_CharT, _Traits>& | 
| 2608 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2609 | 	       const extreme_value_distribution<_RealType>& __x) | 
| 2610 |     { | 
| 2611 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2612 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2613 |  | 
| 2614 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2615 |       const _CharT __fill = __os.fill(); | 
| 2616 |       const std::streamsize __precision = __os.precision(); | 
| 2617 |       const _CharT __space = __os.widen(' '); | 
| 2618 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2619 |       __os.fill(__space); | 
| 2620 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2621 |  | 
| 2622 |       __os << __x.a() << __space << __x.b(); | 
| 2623 |  | 
| 2624 |       __os.flags(__flags); | 
| 2625 |       __os.fill(__fill); | 
| 2626 |       __os.precision(__precision); | 
| 2627 |       return __os; | 
| 2628 |     } | 
| 2629 |  | 
| 2630 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2631 |     std::basic_istream<_CharT, _Traits>& | 
| 2632 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2633 | 	       extreme_value_distribution<_RealType>& __x) | 
| 2634 |     { | 
| 2635 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2636 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2637 |  | 
| 2638 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2639 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2640 |  | 
| 2641 |       _RealType __a, __b; | 
| 2642 |       if (__is >> __a >> __b) | 
| 2643 | 	__x.param(typename extreme_value_distribution<_RealType>:: | 
| 2644 | 		  param_type(__a, __b)); | 
| 2645 |  | 
| 2646 |       __is.flags(__flags); | 
| 2647 |       return __is; | 
| 2648 |     } | 
| 2649 |  | 
| 2650 |  | 
| 2651 |   template<typename _IntType> | 
| 2652 |     void | 
| 2653 |     discrete_distribution<_IntType>::param_type:: | 
| 2654 |     _M_initialize() | 
| 2655 |     { | 
| 2656 |       if (_M_prob.size() < 2) | 
| 2657 | 	{ | 
| 2658 | 	  _M_prob.clear(); | 
| 2659 | 	  return; | 
| 2660 | 	} | 
| 2661 |  | 
| 2662 |       const double __sum = std::accumulate(_M_prob.begin(), | 
| 2663 | 					   _M_prob.end(), 0.0); | 
| 2664 |       // Now normalize the probabilites. | 
| 2665 |       __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(), | 
| 2666 | 			    __sum); | 
| 2667 |       // Accumulate partial sums. | 
| 2668 |       _M_cp.reserve(_M_prob.size()); | 
| 2669 |       std::partial_sum(_M_prob.begin(), _M_prob.end(), | 
| 2670 | 		       std::back_inserter(_M_cp)); | 
| 2671 |       // Make sure the last cumulative probability is one. | 
| 2672 |       _M_cp[_M_cp.size() - 1] = 1.0; | 
| 2673 |     } | 
| 2674 |  | 
| 2675 |   template<typename _IntType> | 
| 2676 |     template<typename _Func> | 
| 2677 |       discrete_distribution<_IntType>::param_type:: | 
| 2678 |       param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) | 
| 2679 |       : _M_prob(), _M_cp() | 
| 2680 |       { | 
| 2681 | 	const size_t __n = __nw == 0 ? 1 : __nw; | 
| 2682 | 	const double __delta = (__xmax - __xmin) / __n; | 
| 2683 |  | 
| 2684 | 	_M_prob.reserve(__n); | 
| 2685 | 	for (size_t __k = 0; __k < __nw; ++__k) | 
| 2686 | 	  _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); | 
| 2687 |  | 
| 2688 | 	_M_initialize(); | 
| 2689 |       } | 
| 2690 |  | 
| 2691 |   template<typename _IntType> | 
| 2692 |     template<typename _UniformRandomNumberGenerator> | 
| 2693 |       typename discrete_distribution<_IntType>::result_type | 
| 2694 |       discrete_distribution<_IntType>:: | 
| 2695 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2696 | 		 const param_type& __param) | 
| 2697 |       { | 
| 2698 | 	if (__param._M_cp.empty()) | 
| 2699 | 	  return result_type(0); | 
| 2700 |  | 
| 2701 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2702 | 	  __aurng(__urng); | 
| 2703 |  | 
| 2704 | 	const double __p = __aurng(); | 
| 2705 | 	auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2706 | 				      __param._M_cp.end(), __p); | 
| 2707 |  | 
| 2708 | 	return __pos - __param._M_cp.begin(); | 
| 2709 |       } | 
| 2710 |  | 
| 2711 |   template<typename _IntType> | 
| 2712 |     template<typename _ForwardIterator, | 
| 2713 | 	     typename _UniformRandomNumberGenerator> | 
| 2714 |       void | 
| 2715 |       discrete_distribution<_IntType>:: | 
| 2716 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2717 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2718 | 		      const param_type& __param) | 
| 2719 |       { | 
| 2720 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2721 |  | 
| 2722 | 	if (__param._M_cp.empty()) | 
| 2723 | 	  { | 
| 2724 | 	    while (__f != __t) | 
| 2725 | 	      *__f++ = result_type(0); | 
| 2726 | 	    return; | 
| 2727 | 	  } | 
| 2728 |  | 
| 2729 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2730 | 	  __aurng(__urng); | 
| 2731 |  | 
| 2732 | 	while (__f != __t) | 
| 2733 | 	  { | 
| 2734 | 	    const double __p = __aurng(); | 
| 2735 | 	    auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2736 | 					  __param._M_cp.end(), __p); | 
| 2737 |  | 
| 2738 | 	    *__f++ = __pos - __param._M_cp.begin(); | 
| 2739 | 	  } | 
| 2740 |       } | 
| 2741 |  | 
| 2742 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 2743 |     std::basic_ostream<_CharT, _Traits>& | 
| 2744 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2745 | 	       const discrete_distribution<_IntType>& __x) | 
| 2746 |     { | 
| 2747 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2748 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2749 |  | 
| 2750 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2751 |       const _CharT __fill = __os.fill(); | 
| 2752 |       const std::streamsize __precision = __os.precision(); | 
| 2753 |       const _CharT __space = __os.widen(' '); | 
| 2754 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2755 |       __os.fill(__space); | 
| 2756 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 2757 |  | 
| 2758 |       std::vector<double> __prob = __x.probabilities(); | 
| 2759 |       __os << __prob.size(); | 
| 2760 |       for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) | 
| 2761 | 	__os << __space << *__dit; | 
| 2762 |  | 
| 2763 |       __os.flags(__flags); | 
| 2764 |       __os.fill(__fill); | 
| 2765 |       __os.precision(__precision); | 
| 2766 |       return __os; | 
| 2767 |     } | 
| 2768 |  | 
| 2769 | namespace __detail | 
| 2770 | { | 
| 2771 |   template<typename _ValT, typename _CharT, typename _Traits> | 
| 2772 |     basic_istream<_CharT, _Traits>& | 
| 2773 |     (basic_istream<_CharT, _Traits>& __is, | 
| 2774 | 		     vector<_ValT>& __vals, size_t __n) | 
| 2775 |     { | 
| 2776 |       __vals.reserve(__n); | 
| 2777 |       while (__n--) | 
| 2778 | 	{ | 
| 2779 | 	  _ValT __val; | 
| 2780 | 	  if (__is >> __val) | 
| 2781 | 	    __vals.push_back(__val); | 
| 2782 | 	  else | 
| 2783 | 	    break; | 
| 2784 | 	} | 
| 2785 |       return __is; | 
| 2786 |     } | 
| 2787 | } // namespace __detail | 
| 2788 |  | 
| 2789 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 2790 |     std::basic_istream<_CharT, _Traits>& | 
| 2791 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2792 | 	       discrete_distribution<_IntType>& __x) | 
| 2793 |     { | 
| 2794 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 2795 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 2796 |  | 
| 2797 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2798 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2799 |  | 
| 2800 |       size_t __n; | 
| 2801 |       if (__is >> __n) | 
| 2802 | 	{ | 
| 2803 | 	  std::vector<double> __prob_vec; | 
| 2804 | 	  if (__detail::__extract_params(__is, __prob_vec, __n)) | 
| 2805 | 	    __x.param({__prob_vec.begin(), __prob_vec.end()}); | 
| 2806 | 	} | 
| 2807 |  | 
| 2808 |       __is.flags(__flags); | 
| 2809 |       return __is; | 
| 2810 |     } | 
| 2811 |  | 
| 2812 |  | 
| 2813 |   template<typename _RealType> | 
| 2814 |     void | 
| 2815 |     piecewise_constant_distribution<_RealType>::param_type:: | 
| 2816 |     _M_initialize() | 
| 2817 |     { | 
| 2818 |       if (_M_int.size() < 2 | 
| 2819 | 	  || (_M_int.size() == 2 | 
| 2820 | 	      && _M_int[0] == _RealType(0) | 
| 2821 | 	      && _M_int[1] == _RealType(1))) | 
| 2822 | 	{ | 
| 2823 | 	  _M_int.clear(); | 
| 2824 | 	  _M_den.clear(); | 
| 2825 | 	  return; | 
| 2826 | 	} | 
| 2827 |  | 
| 2828 |       const double __sum = std::accumulate(_M_den.begin(), | 
| 2829 | 					   _M_den.end(), 0.0); | 
| 2830 |  | 
| 2831 |       __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), | 
| 2832 | 			    __sum); | 
| 2833 |  | 
| 2834 |       _M_cp.reserve(_M_den.size()); | 
| 2835 |       std::partial_sum(_M_den.begin(), _M_den.end(), | 
| 2836 | 		       std::back_inserter(_M_cp)); | 
| 2837 |  | 
| 2838 |       // Make sure the last cumulative probability is one. | 
| 2839 |       _M_cp[_M_cp.size() - 1] = 1.0; | 
| 2840 |  | 
| 2841 |       for (size_t __k = 0; __k < _M_den.size(); ++__k) | 
| 2842 | 	_M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; | 
| 2843 |     } | 
| 2844 |  | 
| 2845 |   template<typename _RealType> | 
| 2846 |     template<typename _InputIteratorB, typename _InputIteratorW> | 
| 2847 |       piecewise_constant_distribution<_RealType>::param_type:: | 
| 2848 |       param_type(_InputIteratorB __bbegin, | 
| 2849 | 		 _InputIteratorB __bend, | 
| 2850 | 		 _InputIteratorW __wbegin) | 
| 2851 |       : _M_int(), _M_den(), _M_cp() | 
| 2852 |       { | 
| 2853 | 	if (__bbegin != __bend) | 
| 2854 | 	  { | 
| 2855 | 	    for (;;) | 
| 2856 | 	      { | 
| 2857 | 		_M_int.push_back(*__bbegin); | 
| 2858 | 		++__bbegin; | 
| 2859 | 		if (__bbegin == __bend) | 
| 2860 | 		  break; | 
| 2861 |  | 
| 2862 | 		_M_den.push_back(*__wbegin); | 
| 2863 | 		++__wbegin; | 
| 2864 | 	      } | 
| 2865 | 	  } | 
| 2866 |  | 
| 2867 | 	_M_initialize(); | 
| 2868 |       } | 
| 2869 |  | 
| 2870 |   template<typename _RealType> | 
| 2871 |     template<typename _Func> | 
| 2872 |       piecewise_constant_distribution<_RealType>::param_type:: | 
| 2873 |       param_type(initializer_list<_RealType> __bl, _Func __fw) | 
| 2874 |       : _M_int(), _M_den(), _M_cp() | 
| 2875 |       { | 
| 2876 | 	_M_int.reserve(__bl.size()); | 
| 2877 | 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) | 
| 2878 | 	  _M_int.push_back(*__biter); | 
| 2879 |  | 
| 2880 | 	_M_den.reserve(_M_int.size() - 1); | 
| 2881 | 	for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) | 
| 2882 | 	  _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); | 
| 2883 |  | 
| 2884 | 	_M_initialize(); | 
| 2885 |       } | 
| 2886 |  | 
| 2887 |   template<typename _RealType> | 
| 2888 |     template<typename _Func> | 
| 2889 |       piecewise_constant_distribution<_RealType>::param_type:: | 
| 2890 |       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) | 
| 2891 |       : _M_int(), _M_den(), _M_cp() | 
| 2892 |       { | 
| 2893 | 	const size_t __n = __nw == 0 ? 1 : __nw; | 
| 2894 | 	const _RealType __delta = (__xmax - __xmin) / __n; | 
| 2895 |  | 
| 2896 | 	_M_int.reserve(__n + 1); | 
| 2897 | 	for (size_t __k = 0; __k <= __nw; ++__k) | 
| 2898 | 	  _M_int.push_back(__xmin + __k * __delta); | 
| 2899 |  | 
| 2900 | 	_M_den.reserve(__n); | 
| 2901 | 	for (size_t __k = 0; __k < __nw; ++__k) | 
| 2902 | 	  _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); | 
| 2903 |  | 
| 2904 | 	_M_initialize(); | 
| 2905 |       } | 
| 2906 |  | 
| 2907 |   template<typename _RealType> | 
| 2908 |     template<typename _UniformRandomNumberGenerator> | 
| 2909 |       typename piecewise_constant_distribution<_RealType>::result_type | 
| 2910 |       piecewise_constant_distribution<_RealType>:: | 
| 2911 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2912 | 		 const param_type& __param) | 
| 2913 |       { | 
| 2914 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2915 | 	  __aurng(__urng); | 
| 2916 |  | 
| 2917 | 	const double __p = __aurng(); | 
| 2918 | 	if (__param._M_cp.empty()) | 
| 2919 | 	  return __p; | 
| 2920 |  | 
| 2921 | 	auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2922 | 				      __param._M_cp.end(), __p); | 
| 2923 | 	const size_t __i = __pos - __param._M_cp.begin(); | 
| 2924 |  | 
| 2925 | 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; | 
| 2926 |  | 
| 2927 | 	return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; | 
| 2928 |       } | 
| 2929 |  | 
| 2930 |   template<typename _RealType> | 
| 2931 |     template<typename _ForwardIterator, | 
| 2932 | 	     typename _UniformRandomNumberGenerator> | 
| 2933 |       void | 
| 2934 |       piecewise_constant_distribution<_RealType>:: | 
| 2935 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2936 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2937 | 		      const param_type& __param) | 
| 2938 |       { | 
| 2939 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2940 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2941 | 	  __aurng(__urng); | 
| 2942 |  | 
| 2943 | 	if (__param._M_cp.empty()) | 
| 2944 | 	  { | 
| 2945 | 	    while (__f != __t) | 
| 2946 | 	      *__f++ = __aurng(); | 
| 2947 | 	    return; | 
| 2948 | 	  } | 
| 2949 |  | 
| 2950 | 	while (__f != __t) | 
| 2951 | 	  { | 
| 2952 | 	    const double __p = __aurng(); | 
| 2953 |  | 
| 2954 | 	    auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2955 | 					  __param._M_cp.end(), __p); | 
| 2956 | 	    const size_t __i = __pos - __param._M_cp.begin(); | 
| 2957 |  | 
| 2958 | 	    const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; | 
| 2959 |  | 
| 2960 | 	    *__f++ = (__param._M_int[__i] | 
| 2961 | 		      + (__p - __pref) / __param._M_den[__i]); | 
| 2962 | 	  } | 
| 2963 |       } | 
| 2964 |  | 
| 2965 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2966 |     std::basic_ostream<_CharT, _Traits>& | 
| 2967 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2968 | 	       const piecewise_constant_distribution<_RealType>& __x) | 
| 2969 |     { | 
| 2970 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 2971 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 2972 |  | 
| 2973 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2974 |       const _CharT __fill = __os.fill(); | 
| 2975 |       const std::streamsize __precision = __os.precision(); | 
| 2976 |       const _CharT __space = __os.widen(' '); | 
| 2977 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2978 |       __os.fill(__space); | 
| 2979 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2980 |  | 
| 2981 |       std::vector<_RealType> __int = __x.intervals(); | 
| 2982 |       __os << __int.size() - 1; | 
| 2983 |  | 
| 2984 |       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) | 
| 2985 | 	__os << __space << *__xit; | 
| 2986 |  | 
| 2987 |       std::vector<double> __den = __x.densities(); | 
| 2988 |       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) | 
| 2989 | 	__os << __space << *__dit; | 
| 2990 |  | 
| 2991 |       __os.flags(__flags); | 
| 2992 |       __os.fill(__fill); | 
| 2993 |       __os.precision(__precision); | 
| 2994 |       return __os; | 
| 2995 |     } | 
| 2996 |  | 
| 2997 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2998 |     std::basic_istream<_CharT, _Traits>& | 
| 2999 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 3000 | 	       piecewise_constant_distribution<_RealType>& __x) | 
| 3001 |     { | 
| 3002 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 3003 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 3004 |  | 
| 3005 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 3006 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 3007 |  | 
| 3008 |       size_t __n; | 
| 3009 |       if (__is >> __n) | 
| 3010 | 	{ | 
| 3011 | 	  std::vector<_RealType> __int_vec; | 
| 3012 | 	  if (__detail::__extract_params(__is, __int_vec, __n + 1)) | 
| 3013 | 	    { | 
| 3014 | 	      std::vector<double> __den_vec; | 
| 3015 | 	      if (__detail::__extract_params(__is, __den_vec, __n)) | 
| 3016 | 		{ | 
| 3017 | 		  __x.param({ __int_vec.begin(), __int_vec.end(), | 
| 3018 | 			      __den_vec.begin() }); | 
| 3019 | 		} | 
| 3020 | 	    } | 
| 3021 | 	} | 
| 3022 |  | 
| 3023 |       __is.flags(__flags); | 
| 3024 |       return __is; | 
| 3025 |     } | 
| 3026 |  | 
| 3027 |  | 
| 3028 |   template<typename _RealType> | 
| 3029 |     void | 
| 3030 |     piecewise_linear_distribution<_RealType>::param_type:: | 
| 3031 |     _M_initialize() | 
| 3032 |     { | 
| 3033 |       if (_M_int.size() < 2 | 
| 3034 | 	  || (_M_int.size() == 2 | 
| 3035 | 	      && _M_int[0] == _RealType(0) | 
| 3036 | 	      && _M_int[1] == _RealType(1) | 
| 3037 | 	      && _M_den[0] == _M_den[1])) | 
| 3038 | 	{ | 
| 3039 | 	  _M_int.clear(); | 
| 3040 | 	  _M_den.clear(); | 
| 3041 | 	  return; | 
| 3042 | 	} | 
| 3043 |  | 
| 3044 |       double __sum = 0.0; | 
| 3045 |       _M_cp.reserve(_M_int.size() - 1); | 
| 3046 |       _M_m.reserve(_M_int.size() - 1); | 
| 3047 |       for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) | 
| 3048 | 	{ | 
| 3049 | 	  const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; | 
| 3050 | 	  __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; | 
| 3051 | 	  _M_cp.push_back(__sum); | 
| 3052 | 	  _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); | 
| 3053 | 	} | 
| 3054 |  | 
| 3055 |       //  Now normalize the densities... | 
| 3056 |       __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), | 
| 3057 | 			    __sum); | 
| 3058 |       //  ... and partial sums...  | 
| 3059 |       __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum); | 
| 3060 |       //  ... and slopes. | 
| 3061 |       __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum); | 
| 3062 |  | 
| 3063 |       //  Make sure the last cumulative probablility is one. | 
| 3064 |       _M_cp[_M_cp.size() - 1] = 1.0; | 
| 3065 |      } | 
| 3066 |  | 
| 3067 |   template<typename _RealType> | 
| 3068 |     template<typename _InputIteratorB, typename _InputIteratorW> | 
| 3069 |       piecewise_linear_distribution<_RealType>::param_type:: | 
| 3070 |       param_type(_InputIteratorB __bbegin, | 
| 3071 | 		 _InputIteratorB __bend, | 
| 3072 | 		 _InputIteratorW __wbegin) | 
| 3073 |       : _M_int(), _M_den(), _M_cp(), _M_m() | 
| 3074 |       { | 
| 3075 | 	for (; __bbegin != __bend; ++__bbegin, ++__wbegin) | 
| 3076 | 	  { | 
| 3077 | 	    _M_int.push_back(*__bbegin); | 
| 3078 | 	    _M_den.push_back(*__wbegin); | 
| 3079 | 	  } | 
| 3080 |  | 
| 3081 | 	_M_initialize(); | 
| 3082 |       } | 
| 3083 |  | 
| 3084 |   template<typename _RealType> | 
| 3085 |     template<typename _Func> | 
| 3086 |       piecewise_linear_distribution<_RealType>::param_type:: | 
| 3087 |       param_type(initializer_list<_RealType> __bl, _Func __fw) | 
| 3088 |       : _M_int(), _M_den(), _M_cp(), _M_m() | 
| 3089 |       { | 
| 3090 | 	_M_int.reserve(__bl.size()); | 
| 3091 | 	_M_den.reserve(__bl.size()); | 
| 3092 | 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) | 
| 3093 | 	  { | 
| 3094 | 	    _M_int.push_back(*__biter); | 
| 3095 | 	    _M_den.push_back(__fw(*__biter)); | 
| 3096 | 	  } | 
| 3097 |  | 
| 3098 | 	_M_initialize(); | 
| 3099 |       } | 
| 3100 |  | 
| 3101 |   template<typename _RealType> | 
| 3102 |     template<typename _Func> | 
| 3103 |       piecewise_linear_distribution<_RealType>::param_type:: | 
| 3104 |       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) | 
| 3105 |       : _M_int(), _M_den(), _M_cp(), _M_m() | 
| 3106 |       { | 
| 3107 | 	const size_t __n = __nw == 0 ? 1 : __nw; | 
| 3108 | 	const _RealType __delta = (__xmax - __xmin) / __n; | 
| 3109 |  | 
| 3110 | 	_M_int.reserve(__n + 1); | 
| 3111 | 	_M_den.reserve(__n + 1); | 
| 3112 | 	for (size_t __k = 0; __k <= __nw; ++__k) | 
| 3113 | 	  { | 
| 3114 | 	    _M_int.push_back(__xmin + __k * __delta); | 
| 3115 | 	    _M_den.push_back(__fw(_M_int[__k] + __delta)); | 
| 3116 | 	  } | 
| 3117 |  | 
| 3118 | 	_M_initialize(); | 
| 3119 |       } | 
| 3120 |  | 
| 3121 |   template<typename _RealType> | 
| 3122 |     template<typename _UniformRandomNumberGenerator> | 
| 3123 |       typename piecewise_linear_distribution<_RealType>::result_type | 
| 3124 |       piecewise_linear_distribution<_RealType>:: | 
| 3125 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 3126 | 		 const param_type& __param) | 
| 3127 |       { | 
| 3128 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 3129 | 	  __aurng(__urng); | 
| 3130 |  | 
| 3131 | 	const double __p = __aurng(); | 
| 3132 | 	if (__param._M_cp.empty()) | 
| 3133 | 	  return __p; | 
| 3134 |  | 
| 3135 | 	auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 3136 | 				      __param._M_cp.end(), __p); | 
| 3137 | 	const size_t __i = __pos - __param._M_cp.begin(); | 
| 3138 |  | 
| 3139 | 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; | 
| 3140 |  | 
| 3141 | 	const double __a = 0.5 * __param._M_m[__i]; | 
| 3142 | 	const double __b = __param._M_den[__i]; | 
| 3143 | 	const double __cm = __p - __pref; | 
| 3144 |  | 
| 3145 | 	_RealType __x = __param._M_int[__i]; | 
| 3146 | 	if (__a == 0) | 
| 3147 | 	  __x += __cm / __b; | 
| 3148 | 	else | 
| 3149 | 	  { | 
| 3150 | 	    const double __d = __b * __b + 4.0 * __a * __cm; | 
| 3151 | 	    __x += 0.5 * (std::sqrt(__d) - __b) / __a; | 
| 3152 |           } | 
| 3153 |  | 
| 3154 |         return __x; | 
| 3155 |       } | 
| 3156 |  | 
| 3157 |   template<typename _RealType> | 
| 3158 |     template<typename _ForwardIterator, | 
| 3159 | 	     typename _UniformRandomNumberGenerator> | 
| 3160 |       void | 
| 3161 |       piecewise_linear_distribution<_RealType>:: | 
| 3162 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 3163 | 		      _UniformRandomNumberGenerator& __urng, | 
| 3164 | 		      const param_type& __param) | 
| 3165 |       { | 
| 3166 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 3167 | 	// We could duplicate everything from operator()... | 
| 3168 | 	while (__f != __t) | 
| 3169 | 	  *__f++ = this->operator()(__urng, __param); | 
| 3170 |       } | 
| 3171 |  | 
| 3172 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 3173 |     std::basic_ostream<_CharT, _Traits>& | 
| 3174 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 3175 | 	       const piecewise_linear_distribution<_RealType>& __x) | 
| 3176 |     { | 
| 3177 |       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type; | 
| 3178 |       typedef typename __ostream_type::ios_base    __ios_base; | 
| 3179 |  | 
| 3180 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 3181 |       const _CharT __fill = __os.fill(); | 
| 3182 |       const std::streamsize __precision = __os.precision(); | 
| 3183 |       const _CharT __space = __os.widen(' '); | 
| 3184 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 3185 |       __os.fill(__space); | 
| 3186 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 3187 |  | 
| 3188 |       std::vector<_RealType> __int = __x.intervals(); | 
| 3189 |       __os << __int.size() - 1; | 
| 3190 |  | 
| 3191 |       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) | 
| 3192 | 	__os << __space << *__xit; | 
| 3193 |  | 
| 3194 |       std::vector<double> __den = __x.densities(); | 
| 3195 |       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) | 
| 3196 | 	__os << __space << *__dit; | 
| 3197 |  | 
| 3198 |       __os.flags(__flags); | 
| 3199 |       __os.fill(__fill); | 
| 3200 |       __os.precision(__precision); | 
| 3201 |       return __os; | 
| 3202 |     } | 
| 3203 |  | 
| 3204 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 3205 |     std::basic_istream<_CharT, _Traits>& | 
| 3206 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 3207 | 	       piecewise_linear_distribution<_RealType>& __x) | 
| 3208 |     { | 
| 3209 |       typedef std::basic_istream<_CharT, _Traits>  __istream_type; | 
| 3210 |       typedef typename __istream_type::ios_base    __ios_base; | 
| 3211 |  | 
| 3212 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 3213 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 3214 |  | 
| 3215 |       size_t __n; | 
| 3216 |       if (__is >> __n) | 
| 3217 | 	{ | 
| 3218 | 	  vector<_RealType> __int_vec; | 
| 3219 | 	  if (__detail::__extract_params(__is, __int_vec, __n + 1)) | 
| 3220 | 	    { | 
| 3221 | 	      vector<double> __den_vec; | 
| 3222 | 	      if (__detail::__extract_params(__is, __den_vec, __n + 1)) | 
| 3223 | 		{ | 
| 3224 | 		  __x.param({ __int_vec.begin(), __int_vec.end(), | 
| 3225 | 			      __den_vec.begin() }); | 
| 3226 | 		} | 
| 3227 | 	    } | 
| 3228 | 	} | 
| 3229 |       __is.flags(__flags); | 
| 3230 |       return __is; | 
| 3231 |     } | 
| 3232 |  | 
| 3233 |  | 
| 3234 |   template<typename _IntType> | 
| 3235 |     seed_seq::seed_seq(std::initializer_list<_IntType> __il) | 
| 3236 |     { | 
| 3237 |       for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) | 
| 3238 | 	_M_v.push_back(__detail::__mod<result_type, | 
| 3239 | 		       __detail::_Shift<result_type, 32>::__value>(*__iter)); | 
| 3240 |     } | 
| 3241 |  | 
| 3242 |   template<typename _InputIterator> | 
| 3243 |     seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) | 
| 3244 |     { | 
| 3245 |       for (_InputIterator __iter = __begin; __iter != __end; ++__iter) | 
| 3246 | 	_M_v.push_back(__detail::__mod<result_type, | 
| 3247 | 		       __detail::_Shift<result_type, 32>::__value>(*__iter)); | 
| 3248 |     } | 
| 3249 |  | 
| 3250 |   template<typename _RandomAccessIterator> | 
| 3251 |     void | 
| 3252 |     seed_seq::generate(_RandomAccessIterator __begin, | 
| 3253 | 		       _RandomAccessIterator __end) | 
| 3254 |     { | 
| 3255 |       typedef typename iterator_traits<_RandomAccessIterator>::value_type | 
| 3256 |         _Type; | 
| 3257 |  | 
| 3258 |       if (__begin == __end) | 
| 3259 | 	return; | 
| 3260 |  | 
| 3261 |       std::fill(__begin, __end, _Type(0x8b8b8b8bu)); | 
| 3262 |  | 
| 3263 |       const size_t __n = __end - __begin; | 
| 3264 |       const size_t __s = _M_v.size(); | 
| 3265 |       const size_t __t = (__n >= 623) ? 11 | 
| 3266 | 		       : (__n >=  68) ? 7 | 
| 3267 | 		       : (__n >=  39) ? 5 | 
| 3268 | 		       : (__n >=   7) ? 3 | 
| 3269 | 		       : (__n - 1) / 2; | 
| 3270 |       const size_t __p = (__n - __t) / 2; | 
| 3271 |       const size_t __q = __p + __t; | 
| 3272 |       const size_t __m = std::max(size_t(__s + 1), __n); | 
| 3273 |  | 
| 3274 |       for (size_t __k = 0; __k < __m; ++__k) | 
| 3275 | 	{ | 
| 3276 | 	  _Type __arg = (__begin[__k % __n] | 
| 3277 | 			 ^ __begin[(__k + __p) % __n] | 
| 3278 | 			 ^ __begin[(__k - 1) % __n]); | 
| 3279 | 	  _Type __r1 = __arg ^ (__arg >> 27); | 
| 3280 | 	  __r1 = __detail::__mod<_Type, | 
| 3281 | 		    __detail::_Shift<_Type, 32>::__value>(1664525u * __r1); | 
| 3282 | 	  _Type __r2 = __r1; | 
| 3283 | 	  if (__k == 0) | 
| 3284 | 	    __r2 += __s; | 
| 3285 | 	  else if (__k <= __s) | 
| 3286 | 	    __r2 += __k % __n + _M_v[__k - 1]; | 
| 3287 | 	  else | 
| 3288 | 	    __r2 += __k % __n; | 
| 3289 | 	  __r2 = __detail::__mod<_Type, | 
| 3290 | 	           __detail::_Shift<_Type, 32>::__value>(__r2); | 
| 3291 | 	  __begin[(__k + __p) % __n] += __r1; | 
| 3292 | 	  __begin[(__k + __q) % __n] += __r2; | 
| 3293 | 	  __begin[__k % __n] = __r2; | 
| 3294 | 	} | 
| 3295 |  | 
| 3296 |       for (size_t __k = __m; __k < __m + __n; ++__k) | 
| 3297 | 	{ | 
| 3298 | 	  _Type __arg = (__begin[__k % __n] | 
| 3299 | 			 + __begin[(__k + __p) % __n] | 
| 3300 | 			 + __begin[(__k - 1) % __n]); | 
| 3301 | 	  _Type __r3 = __arg ^ (__arg >> 27); | 
| 3302 | 	  __r3 = __detail::__mod<_Type, | 
| 3303 | 		   __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3); | 
| 3304 | 	  _Type __r4 = __r3 - __k % __n; | 
| 3305 | 	  __r4 = __detail::__mod<_Type, | 
| 3306 | 	           __detail::_Shift<_Type, 32>::__value>(__r4); | 
| 3307 | 	  __begin[(__k + __p) % __n] ^= __r3; | 
| 3308 | 	  __begin[(__k + __q) % __n] ^= __r4; | 
| 3309 | 	  __begin[__k % __n] = __r4; | 
| 3310 | 	} | 
| 3311 |     } | 
| 3312 |  | 
| 3313 |   template<typename _RealType, size_t __bits, | 
| 3314 | 	   typename _UniformRandomNumberGenerator> | 
| 3315 |     _RealType | 
| 3316 |     generate_canonical(_UniformRandomNumberGenerator& __urng) | 
| 3317 |     { | 
| 3318 |       static_assert(std::is_floating_point<_RealType>::value, | 
| 3319 | 		    "template argument must be a floating point type" ); | 
| 3320 |  | 
| 3321 |       const size_t __b | 
| 3322 | 	= std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits), | 
| 3323 |                    __bits); | 
| 3324 |       const long double __r = static_cast<long double>(__urng.max()) | 
| 3325 | 			    - static_cast<long double>(__urng.min()) + 1.0L; | 
| 3326 |       const size_t __log2r = std::log(__r) / std::log(2.0L); | 
| 3327 |       const size_t __m = std::max<size_t>(1UL, | 
| 3328 | 					  (__b + __log2r - 1UL) / __log2r); | 
| 3329 |       _RealType __ret; | 
| 3330 |       _RealType __sum = _RealType(0); | 
| 3331 |       _RealType __tmp = _RealType(1); | 
| 3332 |       for (size_t __k = __m; __k != 0; --__k) | 
| 3333 | 	{ | 
| 3334 | 	  __sum += _RealType(__urng() - __urng.min()) * __tmp; | 
| 3335 | 	  __tmp *= __r; | 
| 3336 | 	} | 
| 3337 |       __ret = __sum / __tmp; | 
| 3338 |       if (__builtin_expect(__ret >= _RealType(1), 0)) | 
| 3339 | 	{ | 
| 3340 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 3341 | 	  __ret = std::nextafter(_RealType(1), _RealType(0)); | 
| 3342 | #else | 
| 3343 | 	  __ret = _RealType(1) | 
| 3344 | 	    - std::numeric_limits<_RealType>::epsilon() / _RealType(2); | 
| 3345 | #endif | 
| 3346 | 	} | 
| 3347 |       return __ret; | 
| 3348 |     } | 
| 3349 |  | 
| 3350 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 3351 | } // namespace | 
| 3352 |  | 
| 3353 | #endif | 
| 3354 |  |