| 1 | /* | 
| 2 |  * eq_unit_test.hpp | 
| 3 |  * | 
| 4 |  *  Created on: Oct 13, 2015 | 
| 5 |  *      Author: i-bird | 
| 6 |  */ | 
| 7 |  | 
| 8 | #ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ | 
| 9 | #define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ | 
| 10 |  | 
| 11 | #define BOOST_TEST_DYN_LINK | 
| 12 | #include <boost/test/unit_test.hpp> | 
| 13 |  | 
| 14 | #include "Laplacian.hpp" | 
| 15 | #include "FiniteDifference/eq.hpp" | 
| 16 | #include "FiniteDifference/sum.hpp" | 
| 17 | #include "FiniteDifference/mul.hpp" | 
| 18 | #include "Grid/grid_dist_id.hpp" | 
| 19 | #include "Decomposition/CartDecomposition.hpp" | 
| 20 | #include "Vector/Vector.hpp" | 
| 21 | #include "Solvers/umfpack_solver.hpp" | 
| 22 | #include "data_type/aggregate.hpp" | 
| 23 | #include "FiniteDifference/FDScheme.hpp" | 
| 24 |  | 
| 25 | constexpr unsigned int x = 0; | 
| 26 | constexpr unsigned int y = 1; | 
| 27 | constexpr unsigned int z = 2; | 
| 28 | constexpr unsigned int V = 0; | 
| 29 |  | 
| 30 | BOOST_AUTO_TEST_SUITE( eq_test_suite ) | 
| 31 |  | 
| 32 | //! [Definition of the system] | 
| 33 |  | 
| 34 | struct lid_nn | 
| 35 | { | 
| 36 | 	// dimensionaly of the equation (2D problem 3D problem ...) | 
| 37 | 	static const unsigned int dims = 2; | 
| 38 |  | 
| 39 | 	// number of fields in the system v_x, v_y, P so a total of 3 | 
| 40 | 	static const unsigned int nvar = 3; | 
| 41 |  | 
| 42 | 	// boundary conditions PERIODIC OR NON_PERIODIC | 
| 43 | 	static const bool boundary[]; | 
| 44 |  | 
| 45 | 	// type of space float, double, ... | 
| 46 | 	typedef float stype; | 
| 47 |  | 
| 48 | 	// type of base grid, it is the distributed grid that will store the result | 
| 49 | 	// Note the first property is a 2D vector (velocity), the second is a scalar (Pressure) | 
| 50 | 	typedef grid_dist_id<2,float,aggregate<float[2],float>,CartDecomposition<2,float>> b_grid; | 
| 51 |  | 
| 52 | 	// type of SparseMatrix, for the linear system, this parameter is bounded by the solver | 
| 53 | 	// that you are using, in case of umfpack it is the only possible choice | 
| 54 | 	typedef SparseMatrix<double,int> SparseMatrix_type; | 
| 55 |  | 
| 56 | 	// type of Vector for the linear system, this parameter is bounded by the solver | 
| 57 | 	// that you are using, in case of umfpack it is the only possible choice | 
| 58 | 	typedef Vector<double> Vector_type; | 
| 59 |  | 
| 60 | 	// Define that the underline grid where we discretize the system of equation is staggered | 
| 61 | 	static const int grid_type = STAGGERED_GRID; | 
| 62 | }; | 
| 63 |  | 
| 64 | const bool lid_nn::boundary[] = {NON_PERIODIC,NON_PERIODIC}; | 
| 65 |  | 
| 66 | //! [Definition of the system] | 
| 67 |  | 
| 68 | //! [Definition of the equation of the system in the bulk and at the boundary] | 
| 69 |  | 
| 70 | // Constant Field | 
| 71 | struct eta | 
| 72 | { | 
| 73 | 	typedef void const_field; | 
| 74 |  | 
| 75 | 	static float val()	{return 1.0;} | 
| 76 | }; | 
| 77 |  | 
| 78 | // Convenient constants | 
| 79 | constexpr unsigned int v[] = {0,1}; | 
| 80 | constexpr unsigned int P = 2; | 
| 81 | constexpr unsigned int ic = 2; | 
| 82 |  | 
| 83 | // Create field that we have v_x, v_y, P | 
| 84 | typedef Field<v[x],lid_nn> v_x; | 
| 85 | typedef Field<v[y],lid_nn> v_y; | 
| 86 | typedef Field<P,lid_nn> Prs; | 
| 87 |  | 
| 88 | // Eq1 V_x | 
| 89 |  | 
| 90 | typedef mul<eta,Lap<v_x,lid_nn>,lid_nn> eta_lap_vx; | 
| 91 | typedef D<x,Prs,lid_nn> p_x; | 
| 92 | typedef minus<p_x,lid_nn> m_p_x; | 
| 93 | typedef sum<eta_lap_vx,m_p_x,lid_nn> vx_eq; | 
| 94 |  | 
| 95 | // Eq2 V_y | 
| 96 |  | 
| 97 | typedef mul<eta,Lap<v_y,lid_nn>,lid_nn> eta_lap_vy; | 
| 98 | typedef D<y,Prs,lid_nn> p_y; | 
| 99 | typedef minus<p_y,lid_nn> m_p_y; | 
| 100 | typedef sum<eta_lap_vy,m_p_y,lid_nn> vy_eq; | 
| 101 |  | 
| 102 | // Eq3 Incompressibility | 
| 103 |  | 
| 104 | typedef D<x,v_x,lid_nn,FORWARD> dx_vx; | 
| 105 | typedef D<y,v_y,lid_nn,FORWARD> dy_vy; | 
| 106 | typedef sum<dx_vx,dy_vy,lid_nn> ic_eq; | 
| 107 |  | 
| 108 |  | 
| 109 | // Equation for boundary conditions | 
| 110 |  | 
| 111 | /* Consider the staggered cell | 
| 112 |  * | 
| 113 |  	 	 \verbatim | 
| 114 |  | 
| 115 | 		+--$--+ | 
| 116 | 		|     | | 
| 117 | 		#  *  # | 
| 118 | 		|     | | 
| 119 | 		0--$--+ | 
| 120 |  | 
| 121 | 	  # = velocity(y) | 
| 122 | 	  $ = velocity(x) | 
| 123 | 	  * = pressure | 
| 124 |  | 
| 125 | 		\endverbatim | 
| 126 |  * | 
| 127 |  * | 
| 128 |  * If we want to impose v_y = 0 on 0 we have to interpolate between # of this cell | 
| 129 |  * and # of the previous cell on y, (Average) or Avg operator | 
| 130 |  * | 
| 131 |  */ | 
| 132 |  | 
| 133 | // Directional Avg | 
| 134 | typedef Avg<x,v_y,lid_nn> avg_vy; | 
| 135 | typedef Avg<y,v_x,lid_nn> avg_vx; | 
| 136 |  | 
| 137 | typedef Avg<x,v_y,lid_nn,FORWARD> avg_vy_f; | 
| 138 | typedef Avg<y,v_x,lid_nn,FORWARD> avg_vx_f; | 
| 139 |  | 
| 140 | #define EQ_1 0 | 
| 141 | #define EQ_2 1 | 
| 142 | #define EQ_3 2 | 
| 143 |  | 
| 144 | //! [Definition of the equation of the system in the bulk and at the boundary] | 
| 145 |  | 
| 146 | template<typename solver_type,typename lid_nn> void lid_driven_cavity_2d() | 
| 147 | { | 
| 148 | 	Vcluster<> & v_cl = create_vcluster(); | 
| 149 |  | 
| 150 | 	if (v_cl.getProcessingUnits() > 3) | 
| 151 | 		return; | 
| 152 |  | 
| 153 | 	//! [lid-driven cavity 2D] | 
| 154 |  | 
| 155 | 	// velocity in the grid is the property 0, pressure is the property 1 | 
| 156 | 	constexpr int velocity = 0; | 
| 157 | 	constexpr int pressure = 1; | 
| 158 |  | 
| 159 | 	// Domain, a rectangle | 
| 160 | 	Box<2,float> domain({0.0,0.0},{3.0,1.0}); | 
| 161 |  | 
| 162 | 	// Ghost (Not important in this case but required) | 
| 163 | 	Ghost<2,float> g(0.01); | 
| 164 |  | 
| 165 | 	// Grid points on x=256 and y=64 | 
| 166 | 	long int sz[] = {256,64}; | 
| 167 | 	size_t szu[2]; | 
| 168 | 	szu[0] = (size_t)sz[0]; | 
| 169 | 	szu[1] = (size_t)sz[1]; | 
| 170 |  | 
| 171 | 	// We need one more point on the left and down part of the domain | 
| 172 | 	// This is given by the boundary conditions that we impose, the | 
| 173 | 	// reason is mathematical in order to have a well defined system | 
| 174 | 	// and cannot be discussed here | 
| 175 | 	Padding<2> pd({1,1},{0,0}); | 
| 176 |  | 
| 177 | 	// Distributed grid that store the solution | 
| 178 | 	grid_dist_id<2,float,aggregate<float[2],float>,CartDecomposition<2,float>> g_dist(szu,domain,g); | 
| 179 |  | 
| 180 | 	// It is the maximum extension of the stencil | 
| 181 | 	Ghost<2,long int> stencil_max(1); | 
| 182 |  | 
| 183 | 	// Finite difference scheme | 
| 184 | 	FDScheme<lid_nn> fd(pd, stencil_max, domain,g_dist); | 
| 185 |  | 
| 186 | 	// Here we impose the equation, we start from the incompressibility Eq imposed in the bulk with the | 
| 187 | 	// exception of the first point {0,0} and than we set P = 0 in {0,0}, why we are doing this is again | 
| 188 | 	// mathematical to have a well defined system, an intuitive explanation is that P and P + c are both | 
| 189 | 	// solution for the incompressibility equation, this produce an ill-posed problem to make it well posed | 
| 190 | 	// we set one point in this case {0,0} the pressure to a fixed constant for convenience P = 0 | 
| 191 | 	fd.impose(ic_eq(),0.0, EQ_3, {0,0},{sz[0]-2,sz[1]-2},true); | 
| 192 | 	fd.impose(Prs(),  0.0, EQ_3, {0,0},{0,0}); | 
| 193 |  | 
| 194 | 	// Here we impose the Eq1 and Eq2 | 
| 195 | 	fd.impose(vx_eq(),0.0, EQ_1, {1,0},{sz[0]-2,sz[1]-2}); | 
| 196 | 	fd.impose(vy_eq(),0.0, EQ_2, {0,1},{sz[0]-2,sz[1]-2}); | 
| 197 |  | 
| 198 | 	// v_x and v_y | 
| 199 | 	// Imposing B1 | 
| 200 | 	fd.impose(v_x(),0.0, EQ_1, {0,0},{0,sz[1]-2}); | 
| 201 | 	fd.impose(avg_vy_f(),0.0, EQ_2 , {-1,0},{-1,sz[1]-1}); | 
| 202 | 	// Imposing B2 | 
| 203 | 	fd.impose(v_x(),0.0, EQ_1, {sz[0]-1,0},{sz[0]-1,sz[1]-2}); | 
| 204 | 	fd.impose(avg_vy(),1.0, EQ_2,    {sz[0]-1,0},{sz[0]-1,sz[1]-1}); | 
| 205 |  | 
| 206 | 	// Imposing B3 | 
| 207 | 	fd.impose(avg_vx_f(),0.0, EQ_1, {0,-1},{sz[0]-1,-1}); | 
| 208 | 	fd.impose(v_y(), 0.0, EQ_2, {0,0},{sz[0]-2,0}); | 
| 209 | 	// Imposing B4 | 
| 210 | 	fd.impose(avg_vx(),0.0, EQ_1,   {0,sz[1]-1},{sz[0]-1,sz[1]-1}); | 
| 211 | 	fd.impose(v_y(), 0.0, EQ_2, {0,sz[1]-1},{sz[0]-2,sz[1]-1}); | 
| 212 |  | 
| 213 | 	// When we pad the grid, there are points of the grid that are not | 
| 214 | 	// touched by the previous condition. Mathematically this lead | 
| 215 | 	// to have too many variables for the conditions that we are imposing. | 
| 216 | 	// Here we are imposing variables that we do not touch to zero | 
| 217 | 	// | 
| 218 |  | 
| 219 | 	// Padding pressure | 
| 220 | 	fd.impose(Prs(), 0.0, EQ_3, {-1,-1},{sz[0]-1,-1}); | 
| 221 | 	fd.impose(Prs(), 0.0, EQ_3, {-1,sz[1]-1},{sz[0]-1,sz[1]-1}); | 
| 222 | 	fd.impose(Prs(), 0.0, EQ_3, {-1,0},{-1,sz[1]-2}); | 
| 223 | 	fd.impose(Prs(), 0.0, EQ_3, {sz[0]-1,0},{sz[0]-1,sz[1]-2}); | 
| 224 |  | 
| 225 | 	// Impose v_x Padding Impose v_y padding | 
| 226 | 	fd.impose(v_x(), 0.0, EQ_1, {-1,-1},{-1,sz[1]-1}); | 
| 227 | 	fd.impose(v_y(), 0.0, EQ_2, {-1,-1},{sz[0]-1,-1}); | 
| 228 |  | 
| 229 | 	solver_type solver; | 
| 230 | 	auto x = solver.solve(fd.getA(),fd.getB()); | 
| 231 |  | 
| 232 | 	//! [lid-driven cavity 2D] | 
| 233 |  | 
| 234 | 	//! [Copy the solution to grid] | 
| 235 |  | 
| 236 | 	fd.template copy<velocity,pressure>(x,{0,0},{sz[0]-1,sz[1]-1},g_dist); | 
| 237 |  | 
| 238 | 	std::string s = std::string(demangle(typeid(solver_type).name())); | 
| 239 | 	s += "_" ; | 
| 240 |  | 
| 241 | 	//! [Copy the solution to grid] | 
| 242 |  | 
| 243 | 	g_dist.write(s + "lid_driven_cavity_p"  + std::to_string(v_cl.getProcessingUnits()) + "_grid" ); | 
| 244 |  | 
| 245 | #if !(defined(SE_CLASS3) || defined(TEST_COVERAGE_MODE)) | 
| 246 |  | 
| 247 | 	// Initialize openfpm | 
| 248 | 	grid_dist_id<2,float,aggregate<float[2],float>> g_dist2(g_dist.getDecomposition(),szu,g); | 
| 249 | 	g_dist2.load("test/lid_driven_cavity_reference.hdf5" ); | 
| 250 |  | 
| 251 | 	auto it2 = g_dist2.getDomainIterator(); | 
| 252 |  | 
| 253 | 	bool test = true; | 
| 254 | 	while (it2.isNext()) | 
| 255 | 	{ | 
| 256 | 		auto p = it2.get(); | 
| 257 |  | 
| 258 | 		test &= fabs(g_dist2.template getProp<velocity>(p)[0] - g_dist.template getProp<velocity>(p)[0]) < 3.5e-5; | 
| 259 | 		test &= fabs(g_dist2.template getProp<velocity>(p)[1] - g_dist.template getProp<velocity>(p)[1]) < 3.5e-5; | 
| 260 |  | 
| 261 | 		test &= fabs(g_dist2.template getProp<pressure>(p) - g_dist.template getProp<pressure>(p)) < 3.0e-4; | 
| 262 |  | 
| 263 | 		if (test == false) | 
| 264 | 		{ | 
| 265 | 			std::cout << g_dist2.template getProp<velocity>(p)[0] << "   "  << g_dist.template getProp<velocity>(p)[0] << std::endl; | 
| 266 | 			std::cout << g_dist2.template getProp<velocity>(p)[1] << "   "  << g_dist.template getProp<velocity>(p)[1] << std::endl; | 
| 267 |  | 
| 268 | 			std::cout << g_dist2.template getProp<pressure>(p) << "   "  << g_dist.template getProp<pressure>(p) << std::endl; | 
| 269 |  | 
| 270 | 			break; | 
| 271 | 		} | 
| 272 |  | 
| 273 | 		++it2; | 
| 274 | 	} | 
| 275 |  | 
| 276 | 	BOOST_REQUIRE_EQUAL(test,true); | 
| 277 |  | 
| 278 | #endif | 
| 279 | } | 
| 280 |  | 
| 281 | // Lid driven cavity, incompressible fluid | 
| 282 |  | 
| 283 | BOOST_AUTO_TEST_CASE(lid_driven_cavity) | 
| 284 | { | 
| 285 | #if defined(HAVE_EIGEN) && defined(HAVE_SUITESPARSE) | 
| 286 | 	lid_driven_cavity_2d<umfpack_solver<double>,lid_nn>(); | 
| 287 | #endif | 
| 288 | } | 
| 289 |  | 
| 290 | BOOST_AUTO_TEST_SUITE_END() | 
| 291 |  | 
| 292 | #endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ */ | 
| 293 |  |