1 | /* |
2 | * eq_unit_test.hpp |
3 | * |
4 | * Created on: Oct 13, 2015 |
5 | * Author: i-bird |
6 | */ |
7 | |
8 | #ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ |
9 | #define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ |
10 | |
11 | #define BOOST_TEST_DYN_LINK |
12 | #include <boost/test/unit_test.hpp> |
13 | |
14 | #include "Laplacian.hpp" |
15 | #include "FiniteDifference/eq.hpp" |
16 | #include "FiniteDifference/sum.hpp" |
17 | #include "FiniteDifference/mul.hpp" |
18 | #include "Grid/grid_dist_id.hpp" |
19 | #include "Decomposition/CartDecomposition.hpp" |
20 | #include "Vector/Vector.hpp" |
21 | #include "Solvers/umfpack_solver.hpp" |
22 | #include "data_type/aggregate.hpp" |
23 | #include "FiniteDifference/FDScheme.hpp" |
24 | |
25 | constexpr unsigned int x = 0; |
26 | constexpr unsigned int y = 1; |
27 | constexpr unsigned int z = 2; |
28 | constexpr unsigned int V = 0; |
29 | |
30 | BOOST_AUTO_TEST_SUITE( eq_test_suite ) |
31 | |
32 | //! [Definition of the system] |
33 | |
34 | struct lid_nn |
35 | { |
36 | // dimensionaly of the equation (2D problem 3D problem ...) |
37 | static const unsigned int dims = 2; |
38 | |
39 | // number of fields in the system v_x, v_y, P so a total of 3 |
40 | static const unsigned int nvar = 3; |
41 | |
42 | // boundary conditions PERIODIC OR NON_PERIODIC |
43 | static const bool boundary[]; |
44 | |
45 | // type of space float, double, ... |
46 | typedef float stype; |
47 | |
48 | // type of base grid, it is the distributed grid that will store the result |
49 | // Note the first property is a 2D vector (velocity), the second is a scalar (Pressure) |
50 | typedef grid_dist_id<2,float,aggregate<float[2],float>,CartDecomposition<2,float>> b_grid; |
51 | |
52 | // type of SparseMatrix, for the linear system, this parameter is bounded by the solver |
53 | // that you are using, in case of umfpack it is the only possible choice |
54 | typedef SparseMatrix<double,int> SparseMatrix_type; |
55 | |
56 | // type of Vector for the linear system, this parameter is bounded by the solver |
57 | // that you are using, in case of umfpack it is the only possible choice |
58 | typedef Vector<double> Vector_type; |
59 | |
60 | // Define that the underline grid where we discretize the system of equation is staggered |
61 | static const int grid_type = STAGGERED_GRID; |
62 | }; |
63 | |
64 | const bool lid_nn::boundary[] = {NON_PERIODIC,NON_PERIODIC}; |
65 | |
66 | //! [Definition of the system] |
67 | |
68 | //! [Definition of the equation of the system in the bulk and at the boundary] |
69 | |
70 | // Constant Field |
71 | struct eta |
72 | { |
73 | typedef void const_field; |
74 | |
75 | static float val() {return 1.0;} |
76 | }; |
77 | |
78 | // Convenient constants |
79 | constexpr unsigned int v[] = {0,1}; |
80 | constexpr unsigned int P = 2; |
81 | constexpr unsigned int ic = 2; |
82 | |
83 | // Create field that we have v_x, v_y, P |
84 | typedef Field<v[x],lid_nn> v_x; |
85 | typedef Field<v[y],lid_nn> v_y; |
86 | typedef Field<P,lid_nn> Prs; |
87 | |
88 | // Eq1 V_x |
89 | |
90 | typedef mul<eta,Lap<v_x,lid_nn>,lid_nn> eta_lap_vx; |
91 | typedef D<x,Prs,lid_nn> p_x; |
92 | typedef minus<p_x,lid_nn> m_p_x; |
93 | typedef sum<eta_lap_vx,m_p_x,lid_nn> vx_eq; |
94 | |
95 | // Eq2 V_y |
96 | |
97 | typedef mul<eta,Lap<v_y,lid_nn>,lid_nn> eta_lap_vy; |
98 | typedef D<y,Prs,lid_nn> p_y; |
99 | typedef minus<p_y,lid_nn> m_p_y; |
100 | typedef sum<eta_lap_vy,m_p_y,lid_nn> vy_eq; |
101 | |
102 | // Eq3 Incompressibility |
103 | |
104 | typedef D<x,v_x,lid_nn,FORWARD> dx_vx; |
105 | typedef D<y,v_y,lid_nn,FORWARD> dy_vy; |
106 | typedef sum<dx_vx,dy_vy,lid_nn> ic_eq; |
107 | |
108 | |
109 | // Equation for boundary conditions |
110 | |
111 | /* Consider the staggered cell |
112 | * |
113 | \verbatim |
114 | |
115 | +--$--+ |
116 | | | |
117 | # * # |
118 | | | |
119 | 0--$--+ |
120 | |
121 | # = velocity(y) |
122 | $ = velocity(x) |
123 | * = pressure |
124 | |
125 | \endverbatim |
126 | * |
127 | * |
128 | * If we want to impose v_y = 0 on 0 we have to interpolate between # of this cell |
129 | * and # of the previous cell on y, (Average) or Avg operator |
130 | * |
131 | */ |
132 | |
133 | // Directional Avg |
134 | typedef Avg<x,v_y,lid_nn> avg_vy; |
135 | typedef Avg<y,v_x,lid_nn> avg_vx; |
136 | |
137 | typedef Avg<x,v_y,lid_nn,FORWARD> avg_vy_f; |
138 | typedef Avg<y,v_x,lid_nn,FORWARD> avg_vx_f; |
139 | |
140 | #define EQ_1 0 |
141 | #define EQ_2 1 |
142 | #define EQ_3 2 |
143 | |
144 | //! [Definition of the equation of the system in the bulk and at the boundary] |
145 | |
146 | template<typename solver_type,typename lid_nn> void lid_driven_cavity_2d() |
147 | { |
148 | Vcluster<> & v_cl = create_vcluster(); |
149 | |
150 | if (v_cl.getProcessingUnits() > 3) |
151 | return; |
152 | |
153 | //! [lid-driven cavity 2D] |
154 | |
155 | // velocity in the grid is the property 0, pressure is the property 1 |
156 | constexpr int velocity = 0; |
157 | constexpr int pressure = 1; |
158 | |
159 | // Domain, a rectangle |
160 | Box<2,float> domain({0.0,0.0},{3.0,1.0}); |
161 | |
162 | // Ghost (Not important in this case but required) |
163 | Ghost<2,float> g(0.01); |
164 | |
165 | // Grid points on x=256 and y=64 |
166 | long int sz[] = {256,64}; |
167 | size_t szu[2]; |
168 | szu[0] = (size_t)sz[0]; |
169 | szu[1] = (size_t)sz[1]; |
170 | |
171 | // We need one more point on the left and down part of the domain |
172 | // This is given by the boundary conditions that we impose, the |
173 | // reason is mathematical in order to have a well defined system |
174 | // and cannot be discussed here |
175 | Padding<2> pd({1,1},{0,0}); |
176 | |
177 | // Distributed grid that store the solution |
178 | grid_dist_id<2,float,aggregate<float[2],float>,CartDecomposition<2,float>> g_dist(szu,domain,g); |
179 | |
180 | // It is the maximum extension of the stencil |
181 | Ghost<2,long int> stencil_max(1); |
182 | |
183 | // Finite difference scheme |
184 | FDScheme<lid_nn> fd(pd, stencil_max, domain,g_dist); |
185 | |
186 | // Here we impose the equation, we start from the incompressibility Eq imposed in the bulk with the |
187 | // exception of the first point {0,0} and than we set P = 0 in {0,0}, why we are doing this is again |
188 | // mathematical to have a well defined system, an intuitive explanation is that P and P + c are both |
189 | // solution for the incompressibility equation, this produce an ill-posed problem to make it well posed |
190 | // we set one point in this case {0,0} the pressure to a fixed constant for convenience P = 0 |
191 | fd.impose(ic_eq(),0.0, EQ_3, {0,0},{sz[0]-2,sz[1]-2},true); |
192 | fd.impose(Prs(), 0.0, EQ_3, {0,0},{0,0}); |
193 | |
194 | // Here we impose the Eq1 and Eq2 |
195 | fd.impose(vx_eq(),0.0, EQ_1, {1,0},{sz[0]-2,sz[1]-2}); |
196 | fd.impose(vy_eq(),0.0, EQ_2, {0,1},{sz[0]-2,sz[1]-2}); |
197 | |
198 | // v_x and v_y |
199 | // Imposing B1 |
200 | fd.impose(v_x(),0.0, EQ_1, {0,0},{0,sz[1]-2}); |
201 | fd.impose(avg_vy_f(),0.0, EQ_2 , {-1,0},{-1,sz[1]-1}); |
202 | // Imposing B2 |
203 | fd.impose(v_x(),0.0, EQ_1, {sz[0]-1,0},{sz[0]-1,sz[1]-2}); |
204 | fd.impose(avg_vy(),1.0, EQ_2, {sz[0]-1,0},{sz[0]-1,sz[1]-1}); |
205 | |
206 | // Imposing B3 |
207 | fd.impose(avg_vx_f(),0.0, EQ_1, {0,-1},{sz[0]-1,-1}); |
208 | fd.impose(v_y(), 0.0, EQ_2, {0,0},{sz[0]-2,0}); |
209 | // Imposing B4 |
210 | fd.impose(avg_vx(),0.0, EQ_1, {0,sz[1]-1},{sz[0]-1,sz[1]-1}); |
211 | fd.impose(v_y(), 0.0, EQ_2, {0,sz[1]-1},{sz[0]-2,sz[1]-1}); |
212 | |
213 | // When we pad the grid, there are points of the grid that are not |
214 | // touched by the previous condition. Mathematically this lead |
215 | // to have too many variables for the conditions that we are imposing. |
216 | // Here we are imposing variables that we do not touch to zero |
217 | // |
218 | |
219 | // Padding pressure |
220 | fd.impose(Prs(), 0.0, EQ_3, {-1,-1},{sz[0]-1,-1}); |
221 | fd.impose(Prs(), 0.0, EQ_3, {-1,sz[1]-1},{sz[0]-1,sz[1]-1}); |
222 | fd.impose(Prs(), 0.0, EQ_3, {-1,0},{-1,sz[1]-2}); |
223 | fd.impose(Prs(), 0.0, EQ_3, {sz[0]-1,0},{sz[0]-1,sz[1]-2}); |
224 | |
225 | // Impose v_x Padding Impose v_y padding |
226 | fd.impose(v_x(), 0.0, EQ_1, {-1,-1},{-1,sz[1]-1}); |
227 | fd.impose(v_y(), 0.0, EQ_2, {-1,-1},{sz[0]-1,-1}); |
228 | |
229 | solver_type solver; |
230 | auto x = solver.solve(fd.getA(),fd.getB()); |
231 | |
232 | //! [lid-driven cavity 2D] |
233 | |
234 | //! [Copy the solution to grid] |
235 | |
236 | fd.template copy<velocity,pressure>(x,{0,0},{sz[0]-1,sz[1]-1},g_dist); |
237 | |
238 | std::string s = std::string(demangle(typeid(solver_type).name())); |
239 | s += "_" ; |
240 | |
241 | //! [Copy the solution to grid] |
242 | |
243 | g_dist.write(s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid" ); |
244 | |
245 | #if !(defined(SE_CLASS3) || defined(TEST_COVERAGE_MODE)) |
246 | |
247 | // Initialize openfpm |
248 | grid_dist_id<2,float,aggregate<float[2],float>> g_dist2(g_dist.getDecomposition(),szu,g); |
249 | g_dist2.load("test/lid_driven_cavity_reference.hdf5" ); |
250 | |
251 | auto it2 = g_dist2.getDomainIterator(); |
252 | |
253 | bool test = true; |
254 | while (it2.isNext()) |
255 | { |
256 | auto p = it2.get(); |
257 | |
258 | test &= fabs(g_dist2.template getProp<velocity>(p)[0] - g_dist.template getProp<velocity>(p)[0]) < 3.5e-5; |
259 | test &= fabs(g_dist2.template getProp<velocity>(p)[1] - g_dist.template getProp<velocity>(p)[1]) < 3.5e-5; |
260 | |
261 | test &= fabs(g_dist2.template getProp<pressure>(p) - g_dist.template getProp<pressure>(p)) < 3.0e-4; |
262 | |
263 | if (test == false) |
264 | { |
265 | std::cout << g_dist2.template getProp<velocity>(p)[0] << " " << g_dist.template getProp<velocity>(p)[0] << std::endl; |
266 | std::cout << g_dist2.template getProp<velocity>(p)[1] << " " << g_dist.template getProp<velocity>(p)[1] << std::endl; |
267 | |
268 | std::cout << g_dist2.template getProp<pressure>(p) << " " << g_dist.template getProp<pressure>(p) << std::endl; |
269 | |
270 | break; |
271 | } |
272 | |
273 | ++it2; |
274 | } |
275 | |
276 | BOOST_REQUIRE_EQUAL(test,true); |
277 | |
278 | #endif |
279 | } |
280 | |
281 | // Lid driven cavity, incompressible fluid |
282 | |
283 | BOOST_AUTO_TEST_CASE(lid_driven_cavity) |
284 | { |
285 | #if defined(HAVE_EIGEN) && defined(HAVE_SUITESPARSE) |
286 | lid_driven_cavity_2d<umfpack_solver<double>,lid_nn>(); |
287 | #endif |
288 | } |
289 | |
290 | BOOST_AUTO_TEST_SUITE_END() |
291 | |
292 | #endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ */ |
293 | |