| 1 | /* |
| 2 | * DistGraphFactory.hpp |
| 3 | * |
| 4 | * Created on: Dec 03, 2015 |
| 5 | * Author: Antonio Leo |
| 6 | */ |
| 7 | |
| 8 | #ifndef DISTGRAPHFACTORYOLD_HPP_ |
| 9 | #define DISTGRAPHFACTORYOLD_HPP_ |
| 10 | |
| 11 | #include "VCluster/VCluster.hpp" |
| 12 | #include "Vector/map_vector.hpp" |
| 13 | #include "Graph/map_graph.hpp" |
| 14 | #include "Grid/grid_sm.hpp" |
| 15 | #include "Space/Shape/Box.hpp" |
| 16 | #include "Space/Shape/HyperCube.hpp" |
| 17 | #include "parmetis.h" |
| 18 | |
| 19 | /*! \brief This class work as a functor |
| 20 | * |
| 21 | * For each number in the boost::mpl::vector (for example 3 6) set the properties of the vertex at the |
| 22 | * specified id (3 6) with pos[d] * spacing[d] with d running from 0 to 1, pos[d] the position id of the vertex |
| 23 | * spacing the grid spacing |
| 24 | * |
| 25 | * Example |
| 26 | * |
| 27 | * if we give a grid_key of dimension 2 4x4 the expression "pos[d] * spacing[d]" |
| 28 | * will assume the value |
| 29 | * |
| 30 | * (0.0 0.0) (0.25 0.0) ...... (1.0 0.0) |
| 31 | * (0.0 0.25)................. (1.0 0.25) |
| 32 | * .................................... |
| 33 | * (0.0 1.0).................. (1.0 1.0) |
| 34 | * |
| 35 | * and the properties 3 6 will be filled with the numbers 0.0 0.0 ....... 1.0 1.0 |
| 36 | * progressively |
| 37 | * |
| 38 | * \tparam dim Dimensionality of the cartesian grid |
| 39 | * \tparam dT type of the domain |
| 40 | * \tparam G_v vertex type object |
| 41 | * \tparam v boost::mpl::vector containing all the index to fill |
| 42 | * \tparam is_stub when is true, produce a trivial operator(), |
| 43 | * to use when v is an empty vector to avoid compilation error |
| 44 | * |
| 45 | */ |
| 46 | |
| 47 | template<unsigned int dim, typename dT, typename G_v, typename v, int impl> |
| 48 | class fill_prop_v |
| 49 | { |
| 50 | //! Reference to an array containing the spacing |
| 51 | const dT (&szd)[dim]; |
| 52 | |
| 53 | //! grid_key_dx Reference containing the actual position |
| 54 | grid_key_dx<dim> & gk; |
| 55 | |
| 56 | //! Vertex object to fill |
| 57 | G_v & g_v; |
| 58 | |
| 59 | //! grid info |
| 60 | const grid_sm<dim, void> & gs; |
| 61 | |
| 62 | public: |
| 63 | |
| 64 | //! Fill the object from where to take the properties |
| 65 | fill_prop_v(G_v & g_v, const dT (&szd)[dim], grid_key_dx<dim> & gk, const grid_sm<dim, void> & gs) : |
| 66 | szd(szd), gk(gk), g_v(g_v), gs(gs) |
| 67 | { |
| 68 | } |
| 69 | |
| 70 | //! It call the function for each property we want to copy |
| 71 | template<typename T> |
| 72 | void operator()(T& t) const |
| 73 | { |
| 74 | typedef typename boost::fusion::result_of::at<v, boost::mpl::int_<T::value>>::type t_val; |
| 75 | |
| 76 | g_v.template get<t_val::value>() = gk.get(T::value) * szd[T::value]; |
| 77 | } |
| 78 | }; |
| 79 | |
| 80 | |
| 81 | /*! \brief This class work as a functor |
| 82 | * |
| 83 | * For each number in the boost::mpl::vector (for example 3 6) set the properties of the vertex at the |
| 84 | * specified id (3 6) with pos[d] * spacing[d] with d running from 0 to 1, pos[d] the position id of the vertex |
| 85 | * spacing the grid spacing |
| 86 | * |
| 87 | * Example |
| 88 | * |
| 89 | * if we give a grid_key of dimension 2 4x4 the expression "pos[d] * spacing[d]" |
| 90 | * will assume the value |
| 91 | * |
| 92 | * (0.0 0.0) (0.25 0.0) ...... (1.0 0.0) |
| 93 | * (0.0 0.25)................. (1.0 0.25) |
| 94 | * .................................... |
| 95 | * (0.0 1.0).................. (1.0 1.0) |
| 96 | * |
| 97 | * and the properties 3 6 will be filled with the numbers 0.0 0.0 ....... 1.0 1.0 |
| 98 | * progressively |
| 99 | * |
| 100 | * \tparam dim Dimensionality of the cartesian grid |
| 101 | * \tparam dT type of the domain |
| 102 | * \tparam G_v vertex type object |
| 103 | * \tparam v boost::mpl::vector containing all the index to fill |
| 104 | * |
| 105 | */ |
| 106 | |
| 107 | template<unsigned int dim, typename dT, typename G_v, typename v> |
| 108 | class fill_prop_v<dim, dT, G_v, v, 0> |
| 109 | { |
| 110 | |
| 111 | public: |
| 112 | |
| 113 | //! Fill the object from where to take the properties |
| 114 | fill_prop_v(G_v & g_v, const dT (&szd)[dim], grid_key_dx<dim> & gk, const grid_sm<dim, void> & gs) |
| 115 | { |
| 116 | } |
| 117 | |
| 118 | //! It call the function for each property we want to copy |
| 119 | template<typename T> |
| 120 | void operator()(T& t) const |
| 121 | { |
| 122 | } |
| 123 | }; |
| 124 | |
| 125 | /*! \brief This class work as a functor |
| 126 | * |
| 127 | * For each number in the boost::mpl::vector (for example 3 6) set the properties of the vertex at the |
| 128 | * specified id (3 6) with pos[d] * spacing[d] with d running from 0 to 1, pos[d] the position id of the vertex |
| 129 | * spacing the grid spacing |
| 130 | * |
| 131 | * Example |
| 132 | * |
| 133 | * if we give a grid_key of dimension 2 4x4 the expression "pos[d] * spacing[d]" |
| 134 | * will assume the value |
| 135 | * |
| 136 | * (0.0 0.0) (0.25 0.0) ...... (1.0 0.0) |
| 137 | * (0.0 0.25)................. (1.0 0.25) |
| 138 | * .................................... |
| 139 | * (0.0 1.0).................. (1.0 1.0) |
| 140 | * |
| 141 | * and the properties 3 6 will be filled with the numbers 0.0 0.0 ....... 1.0 1.0 |
| 142 | * progressively |
| 143 | * |
| 144 | * \tparam dim Dimensionality of the cartesian grid |
| 145 | * \tparam dT type of the domain |
| 146 | * \tparam G_v vertex type object |
| 147 | * \tparam v boost::mpl::vector containing all the index to fill |
| 148 | * |
| 149 | */ |
| 150 | |
| 151 | template<unsigned int dim, typename dT, typename G_v, typename v> |
| 152 | class fill_prop_v<dim, dT, G_v, v, 2> |
| 153 | { |
| 154 | |
| 155 | //! Reference to an array containing the spacing |
| 156 | const dT (&szd)[dim]; |
| 157 | |
| 158 | //! grid_key_dx Reference containing the actual position |
| 159 | grid_key_dx<dim> & gk; |
| 160 | |
| 161 | //! Vertex object to fill |
| 162 | G_v & g_v; |
| 163 | |
| 164 | //! grid info |
| 165 | const grid_sm<dim, void> & gs; |
| 166 | |
| 167 | public: |
| 168 | |
| 169 | //! Fill the object from where to take the properties |
| 170 | fill_prop_v(G_v & g_v, const dT (&szd)[dim], grid_key_dx<dim> & gk, const grid_sm<dim, void> & gs) |
| 171 | :szd(szd), gk(gk), g_v(g_v), gs(gs) |
| 172 | { |
| 173 | } |
| 174 | |
| 175 | //! It call the function for each property we want to copy |
| 176 | template<typename T> |
| 177 | void operator()(T& t) const |
| 178 | { |
| 179 | typedef typename boost::fusion::result_of::at<v, boost::mpl::int_<0>>::type t_val; |
| 180 | typedef typename boost::mpl::at<typename G_v::T_type::type,t_val>::type s_type; |
| 181 | |
| 182 | for (size_t i = 0 ; i < std::extent<s_type>::value ; i++) |
| 183 | g_v.template get<t_val::value>()[i] = 0.0; |
| 184 | |
| 185 | for (size_t i = 0 ; i < dim ; i++) |
| 186 | g_v.template get<t_val::value>()[i] = gk.get(i) * static_cast<float>(szd[i]); |
| 187 | } |
| 188 | }; |
| 189 | |
| 190 | /*! \brief Operator for vector and scalar property |
| 191 | * |
| 192 | * \tparam i Size of the property |
| 193 | * \tparam p Type of the property |
| 194 | * \tparam Graph Graph |
| 195 | * \tparam pos Array of properties |
| 196 | */ |
| 197 | template<int i, typename p, typename Graph, int ... pos> |
| 198 | struct fill_prop_v_by_type |
| 199 | { |
| 200 | |
| 201 | typedef typename boost::mpl::at<p, boost::mpl::int_<0>>::type v_element; |
| 202 | typedef typename boost::mpl::at<typename Graph::V_type::type, v_element>::type pos_prop_type; |
| 203 | |
| 204 | enum |
| 205 | { |
| 206 | value = ((sizeof...(pos) != 0) * (std::is_array<pos_prop_type>::value + 1)) |
| 207 | }; |
| 208 | |
| 209 | }; |
| 210 | |
| 211 | /*! \brief Operator for vector and scalar property in the case there are no properties |
| 212 | * |
| 213 | * \tparam i Size of the property |
| 214 | * \tparam p Type of the property |
| 215 | * \tparam Graph Graph |
| 216 | * \tparam pos Array of properties |
| 217 | */ |
| 218 | template<typename p, typename Graph, int ... pos> |
| 219 | struct fill_prop_v_by_type<0, p, Graph, pos...> |
| 220 | { |
| 221 | enum |
| 222 | { |
| 223 | value = 0 |
| 224 | }; |
| 225 | |
| 226 | }; |
| 227 | |
| 228 | /*! \brief Graph constructor function specialization |
| 229 | * |
| 230 | * On C++ partial function specialization is not allowed, so we need a class to do it |
| 231 | * |
| 232 | * \see CartesianGraphFactory method construct |
| 233 | * |
| 234 | */ |
| 235 | |
| 236 | template<unsigned int dim, typename Graph, int se, typename T, unsigned int dim_c, int ... pos> |
| 237 | class DistGraph_constr_impl |
| 238 | { |
| 239 | public: |
| 240 | //! Construct Cartesian graph |
| 241 | static Graph construct(const size_t (&sz)[dim], Box<dim, T> dom) |
| 242 | { |
| 243 | Vcluster<> &v_cl = create_vcluster(); |
| 244 | |
| 245 | // Calculate the size of the hyper-cubes on each dimension |
| 246 | T szd[dim]; |
| 247 | |
| 248 | for (size_t i = 0; i < dim; i++) |
| 249 | { |
| 250 | szd[i] = (dom.getHigh(i) - dom.getLow(i)) / sz[i]; |
| 251 | } |
| 252 | |
| 253 | //! Construct an hyper-cube of dimension dim |
| 254 | |
| 255 | HyperCube<dim> hc; |
| 256 | |
| 257 | // Construct a grid info |
| 258 | |
| 259 | grid_sm<dim, void> g(sz); |
| 260 | |
| 261 | //! Get the processor id |
| 262 | size_t p_id = v_cl.getProcessUnitID(); |
| 263 | |
| 264 | //! Get the number of processing units |
| 265 | size_t Np = v_cl.getProcessingUnits(); |
| 266 | |
| 267 | //! Division of vertices in Np graphs |
| 268 | //! Put (div+1) vertices in mod graphs |
| 269 | //! Put div vertices in the rest of the graphs |
| 270 | size_t mod_v = g.size() % Np; |
| 271 | size_t div_v = g.size() / Np; |
| 272 | |
| 273 | //! Distribution vector |
| 274 | openfpm::vector<idx_t> vtxdist(v_cl.getProcessingUnits() + 1); |
| 275 | |
| 276 | for (int i = 0; i <= Np; i++) |
| 277 | { |
| 278 | if (i < mod_v) |
| 279 | vtxdist.get(i) = (div_v + 1) * (i); |
| 280 | else |
| 281 | vtxdist.get(i) = (div_v) * (i) + mod_v; |
| 282 | } |
| 283 | |
| 284 | //! Get size of this processor graph |
| 285 | size_t gp_size = vtxdist.get(p_id + 1) - vtxdist.get(p_id); |
| 286 | |
| 287 | //! Graph to construct |
| 288 | Graph gp(gp_size); |
| 289 | |
| 290 | //! Store the decomposition vector inside the distributed graph |
| 291 | gp.initDistributionVector(vtxdist); |
| 292 | |
| 293 | /****************** |
| 294 | * |
| 295 | * Create the edges and fill spatial |
| 296 | * information properties |
| 297 | * |
| 298 | ******************/ |
| 299 | |
| 300 | //! Construct a key iterator |
| 301 | grid_key_dx_iterator<dim> k_it(g); |
| 302 | |
| 303 | //! Local iterator of the graph |
| 304 | size_t local_it = 0; |
| 305 | |
| 306 | //! Iterate through all the elements |
| 307 | |
| 308 | while (k_it.isNext()) |
| 309 | { |
| 310 | size_t v_id = g.LinId(k_it.get()); |
| 311 | |
| 312 | if (v_id < vtxdist.get(p_id + 1) && v_id >= vtxdist.get(p_id)) |
| 313 | { |
| 314 | |
| 315 | grid_key_dx<dim> key = k_it.get(); |
| 316 | |
| 317 | // Vertex object |
| 318 | |
| 319 | auto obj = gp.vertex(local_it); |
| 320 | |
| 321 | typedef typename to_boost_vmpl<pos...>::type p; |
| 322 | |
| 323 | // vertex spatial properties functor |
| 324 | |
| 325 | fill_prop_v<dim, T, decltype(gp.vertex(local_it)), typename to_boost_vmpl<pos...>::type, fill_prop_v_by_type<sizeof...(pos), p, Graph, pos...>::value> flp(obj, szd, key, g); |
| 326 | |
| 327 | // fill properties |
| 328 | |
| 329 | boost::mpl::for_each<boost::mpl::range_c<int, 0, sizeof...(pos)> >(flp); |
| 330 | |
| 331 | // set map global to local in the graph, needed because vertex is already created without addVertex method |
| 332 | |
| 333 | gp.setGlobalMap(v_id, local_it, v_id); |
| 334 | |
| 335 | // Get the combinations of dimension d |
| 336 | |
| 337 | for (size_t d = dim - 1; d >= dim_c; d--) |
| 338 | { |
| 339 | // create the edges for that dimension |
| 340 | |
| 341 | std::vector<comb<dim>> c = hc.getCombinations_R(d); |
| 342 | |
| 343 | // for each combination calculate a safe linearization and create an edge |
| 344 | |
| 345 | for (size_t j = 0; j < c.size(); j++) |
| 346 | { |
| 347 | // Calculate the element size |
| 348 | |
| 349 | T ele_sz = 0; |
| 350 | |
| 351 | // for each dimension multiply and reduce |
| 352 | |
| 353 | for (size_t s = 0; s < dim; s++) |
| 354 | { |
| 355 | ele_sz += szd[s] * abs(c[j][s]); |
| 356 | } |
| 357 | |
| 358 | // Calculate the end point vertex id |
| 359 | // Calculate the start point id |
| 360 | |
| 361 | size_t start_v = local_it; |
| 362 | size_t end_v = g.template LinId<CheckExistence>(key, c[j].getComb()); |
| 363 | |
| 364 | // check if the end_v is valid globally |
| 365 | if (end_v < g.size()) |
| 366 | { |
| 367 | // Add an edge and set the the edge property to the size of the face (communication weight) |
| 368 | gp.template addEdge<NoCheck>(start_v, end_v).template get<se>() = ele_sz; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | ++local_it; |
| 373 | } |
| 374 | ++k_it; |
| 375 | } |
| 376 | |
| 377 | return gp; |
| 378 | } |
| 379 | }; |
| 380 | |
| 381 | /*! \brief Graph constructor function specialization |
| 382 | * |
| 383 | * On C++ partial function specialization is not allowed, so we need a class to do it |
| 384 | * This specialization handle the case when we have NO_EDGE option active |
| 385 | * |
| 386 | * \see CartesianGraphFactory method construct |
| 387 | * |
| 388 | */ |
| 389 | |
| 390 | template<unsigned int dim, typename Graph, typename T, unsigned int dim_c, int ... pos> |
| 391 | class DistGraph_constr_impl<dim, Graph, NO_EDGE, T, dim_c, pos...> |
| 392 | { |
| 393 | public: |
| 394 | //! Construct Cartesian graph |
| 395 | static Graph construct(const size_t (&sz)[dim], Box<dim, T> dom) |
| 396 | { |
| 397 | Vcluster<> &v_cl = create_vcluster(); |
| 398 | |
| 399 | // Calculate the size of the hyper-cubes on each dimension |
| 400 | |
| 401 | T szd[dim]; |
| 402 | |
| 403 | for (size_t i = 0; i < dim; i++) |
| 404 | { |
| 405 | szd[i] = (dom.getHigh(i) - dom.getLow(i)) / sz[i]; |
| 406 | } |
| 407 | |
| 408 | //! Construct an hyper-cube of dimension dim |
| 409 | |
| 410 | HyperCube<dim> hc; |
| 411 | |
| 412 | // Construct a grid info |
| 413 | |
| 414 | grid_sm<dim, void> g(sz); |
| 415 | |
| 416 | //! Get the processor id |
| 417 | size_t p_id = v_cl.getProcessUnitID(); |
| 418 | |
| 419 | //! Get the number of processing units |
| 420 | size_t Np = v_cl.getProcessingUnits(); |
| 421 | |
| 422 | //! Division of vertices in Np graphs |
| 423 | //! Put (div+1) vertices in mod graphs |
| 424 | //! Put div vertices in the rest of the graphs |
| 425 | size_t mod_v = g.size() % Np; |
| 426 | size_t div_v = g.size() / Np; |
| 427 | |
| 428 | //! Distribution vector |
| 429 | openfpm::vector<idx_t> vtxdist(v_cl.getProcessingUnits() + 1); |
| 430 | |
| 431 | for (size_t i = 0; i <= Np; i++) |
| 432 | { |
| 433 | if (i < mod_v) |
| 434 | vtxdist.get(i) = (div_v + 1) * (i); |
| 435 | else |
| 436 | vtxdist.get(i) = (div_v) * (i) + mod_v; |
| 437 | } |
| 438 | |
| 439 | size_t gp_size = vtxdist.get(p_id + 1) - vtxdist.get(p_id); |
| 440 | |
| 441 | //! Graph to construct |
| 442 | Graph gp(gp_size); |
| 443 | |
| 444 | //! Store the decomposition vector inside the distributed graph |
| 445 | gp.initDistributionVector(vtxdist); |
| 446 | |
| 447 | /****************** |
| 448 | * |
| 449 | * Create the edges and fill spatial |
| 450 | * information properties |
| 451 | * |
| 452 | ******************/ |
| 453 | |
| 454 | //! Construct a key iterator |
| 455 | grid_key_dx_iterator<dim> k_it(g); |
| 456 | |
| 457 | //! Local iterator of the graph |
| 458 | size_t local_it = 0; |
| 459 | |
| 460 | //! Iterate through all the elements |
| 461 | |
| 462 | while (k_it.isNext()) |
| 463 | { |
| 464 | size_t v_id = g.LinId(k_it.get()); |
| 465 | |
| 466 | if (v_id < (size_t)vtxdist.get(p_id + 1) && v_id >= (size_t)vtxdist.get(p_id)) |
| 467 | { |
| 468 | grid_key_dx<dim> key = k_it.get(); |
| 469 | |
| 470 | // Vertex object |
| 471 | auto obj = gp.vertex(local_it); |
| 472 | |
| 473 | typedef typename to_boost_vmpl<pos...>::type p; |
| 474 | |
| 475 | // vertex spatial properties functor |
| 476 | |
| 477 | fill_prop_v<dim, T, decltype(gp.vertex(local_it)), typename to_boost_vmpl<pos...>::type, fill_prop_v_by_type<sizeof...(pos), p, Graph, pos...>::value> flp(obj, szd, key, g); |
| 478 | |
| 479 | // fill properties |
| 480 | |
| 481 | boost::mpl::for_each<boost::mpl::range_c<int, 0, sizeof...(pos)> >(flp); |
| 482 | |
| 483 | // set map global to local in the graph, needed because vertex is already created without addVertex method |
| 484 | |
| 485 | gp.setGlobalMap(v_id, local_it, v_id); |
| 486 | |
| 487 | // Get the combinations of dimension d |
| 488 | |
| 489 | for (size_t d = dim - 1; d >= dim_c; d--) |
| 490 | { |
| 491 | // create the edges for that dimension |
| 492 | |
| 493 | std::vector<comb<dim>> c = hc.getCombinations_R(d); |
| 494 | |
| 495 | // for each combination calculate a safe linearization and create an edge |
| 496 | |
| 497 | for (size_t j = 0; j < c.size(); j++) |
| 498 | { |
| 499 | // Calculate the element size |
| 500 | |
| 501 | T ele_sz = 0; |
| 502 | |
| 503 | // for each dimension multiply and reduce |
| 504 | |
| 505 | for (size_t s = 0; s < dim; s++) |
| 506 | { |
| 507 | ele_sz += szd[s] * abs(c[j][s]); |
| 508 | } |
| 509 | |
| 510 | // Calculate the end point vertex id |
| 511 | // Calculate the start point id |
| 512 | |
| 513 | size_t start_v = local_it; |
| 514 | size_t end_v = g.template LinId<CheckExistence>(key, c[j].getComb()); |
| 515 | |
| 516 | // check if the end_v is valid globally |
| 517 | if (end_v < g.size()) |
| 518 | { |
| 519 | // Add an edge and set the the edge property to the size of the face (communication weight) |
| 520 | gp.addEdge(start_v, end_v, v_id, end_v); |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | ++local_it; |
| 525 | } |
| 526 | ++k_it; |
| 527 | } |
| 528 | return gp; |
| 529 | } |
| 530 | }; |
| 531 | |
| 532 | /*! \brief This class construct a cartesian graph |
| 533 | * |
| 534 | * This class construct a cartesian graph |
| 535 | * |
| 536 | * \param dim dimensionality of the cartesian grid |
| 537 | * |
| 538 | */ |
| 539 | |
| 540 | template<unsigned int dim, typename Graph> |
| 541 | class DistGraphFactory |
| 542 | { |
| 543 | |
| 544 | public: |
| 545 | |
| 546 | /*! \brief Construct a cartesian graph, with V and E edge properties |
| 547 | * |
| 548 | * Each vertex is a subspace (Hyper-cube) of dimension dim, each vertex is |
| 549 | * connected with an edge if two vertex (Hyper-cube) share a element of dimension grater than |
| 550 | * dim_c. One property can be used to store the contact size or the d-dimensional |
| 551 | * surface in common between two connected hyper-cube. |
| 552 | * |
| 553 | * \param sz Vector that store the size of the grid on each dimension |
| 554 | * \param dom Box enclosing the physical domain |
| 555 | * |
| 556 | * \tparam se Indicate which properties fill with the contact size. The |
| 557 | * contact size is the point, line , surface, d-dimensional object size |
| 558 | * in contact (in common) between two hyper-cube. NO_EDGE indicate |
| 559 | * no property will store this information |
| 560 | * \tparam T type of the domain like (int real complex ... ) |
| 561 | * \tparam dim_c Connectivity dimension |
| 562 | * \tparam pos... (optional)one or more integer indicating the spatial properties |
| 563 | * |
| 564 | */ |
| 565 | template<int se, typename T, unsigned int dim_c, int ... pos> |
| 566 | static Graph construct(const size_t (&sz)[dim], Box<dim, T> dom) |
| 567 | { |
| 568 | return DistGraph_constr_impl<dim, Graph, se, T, dim_c, pos...>::construct(sz, dom); |
| 569 | } |
| 570 | }; |
| 571 | |
| 572 | #endif /* DISTGRAPHFACTORY_HPP_ */ |
| 573 | |